A Note on Lagrange Interpolation of |<i>x</i>| on the Chebyshev and Chebyshev–Lobatto Nodal Systems: The Even Cases

Throughout this study, we continue the analysis of a recently found out Gibbs–Wilbraham phenomenon, being related to the behavior of the Lagrange interpolation polynomials of the continuous absolute value function. Our study establishes the error of the Lagrange polynomial interpolants of the functi...

Full description

Bibliographic Details
Main Authors: Elías Berriochoa, Alicia Cachafeiro, Héctor García-Rábade, José Manuel García-Amor
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/15/2558
_version_ 1797413212590702592
author Elías Berriochoa
Alicia Cachafeiro
Héctor García-Rábade
José Manuel García-Amor
author_facet Elías Berriochoa
Alicia Cachafeiro
Héctor García-Rábade
José Manuel García-Amor
author_sort Elías Berriochoa
collection DOAJ
description Throughout this study, we continue the analysis of a recently found out Gibbs–Wilbraham phenomenon, being related to the behavior of the Lagrange interpolation polynomials of the continuous absolute value function. Our study establishes the error of the Lagrange polynomial interpolants of the function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></semantics></math></inline-formula> on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula>, using Chebyshev and Chebyshev–Lobatto nodal systems with an even number of points. Moreover, with respect to the odd cases, relevant changes in the shape and the extrema of the error are given.
first_indexed 2024-03-09T05:14:23Z
format Article
id doaj.art-d3bfda6671af41eaaf48c58cf747ef26
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T05:14:23Z
publishDate 2022-07-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-d3bfda6671af41eaaf48c58cf747ef262023-12-03T12:47:06ZengMDPI AGMathematics2227-73902022-07-011015255810.3390/math10152558A Note on Lagrange Interpolation of |<i>x</i>| on the Chebyshev and Chebyshev–Lobatto Nodal Systems: The Even CasesElías Berriochoa0Alicia Cachafeiro1Héctor García-Rábade2José Manuel García-Amor3Departamento de Matemática Aplicada I, Universidad de Vigo, 36310 Vigo, SpainDepartamento de Matemática Aplicada I, Universidad de Vigo, 36310 Vigo, SpainDepartamento de Matemática Aplicada II, Universidad de Vigo, 32004 Ourense, SpainXunta de Galicia, Instituto E. S. Valle Inclán, 36001 Pontevedra, SpainThroughout this study, we continue the analysis of a recently found out Gibbs–Wilbraham phenomenon, being related to the behavior of the Lagrange interpolation polynomials of the continuous absolute value function. Our study establishes the error of the Lagrange polynomial interpolants of the function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></semantics></math></inline-formula> on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></semantics></math></inline-formula>, using Chebyshev and Chebyshev–Lobatto nodal systems with an even number of points. Moreover, with respect to the odd cases, relevant changes in the shape and the extrema of the error are given.https://www.mdpi.com/2227-7390/10/15/2558Lagrange interpolationChebyshev nodal systemsChebyshev–Lobatto nodal systemsabsolute value approximationrate of convergenceGibbs–Wilbraham phenomena
spellingShingle Elías Berriochoa
Alicia Cachafeiro
Héctor García-Rábade
José Manuel García-Amor
A Note on Lagrange Interpolation of |<i>x</i>| on the Chebyshev and Chebyshev–Lobatto Nodal Systems: The Even Cases
Mathematics
Lagrange interpolation
Chebyshev nodal systems
Chebyshev–Lobatto nodal systems
absolute value approximation
rate of convergence
Gibbs–Wilbraham phenomena
title A Note on Lagrange Interpolation of |<i>x</i>| on the Chebyshev and Chebyshev–Lobatto Nodal Systems: The Even Cases
title_full A Note on Lagrange Interpolation of |<i>x</i>| on the Chebyshev and Chebyshev–Lobatto Nodal Systems: The Even Cases
title_fullStr A Note on Lagrange Interpolation of |<i>x</i>| on the Chebyshev and Chebyshev–Lobatto Nodal Systems: The Even Cases
title_full_unstemmed A Note on Lagrange Interpolation of |<i>x</i>| on the Chebyshev and Chebyshev–Lobatto Nodal Systems: The Even Cases
title_short A Note on Lagrange Interpolation of |<i>x</i>| on the Chebyshev and Chebyshev–Lobatto Nodal Systems: The Even Cases
title_sort note on lagrange interpolation of i x i on the chebyshev and chebyshev lobatto nodal systems the even cases
topic Lagrange interpolation
Chebyshev nodal systems
Chebyshev–Lobatto nodal systems
absolute value approximation
rate of convergence
Gibbs–Wilbraham phenomena
url https://www.mdpi.com/2227-7390/10/15/2558
work_keys_str_mv AT eliasberriochoa anoteonlagrangeinterpolationofixionthechebyshevandchebyshevlobattonodalsystemstheevencases
AT aliciacachafeiro anoteonlagrangeinterpolationofixionthechebyshevandchebyshevlobattonodalsystemstheevencases
AT hectorgarciarabade anoteonlagrangeinterpolationofixionthechebyshevandchebyshevlobattonodalsystemstheevencases
AT josemanuelgarciaamor anoteonlagrangeinterpolationofixionthechebyshevandchebyshevlobattonodalsystemstheevencases
AT eliasberriochoa noteonlagrangeinterpolationofixionthechebyshevandchebyshevlobattonodalsystemstheevencases
AT aliciacachafeiro noteonlagrangeinterpolationofixionthechebyshevandchebyshevlobattonodalsystemstheevencases
AT hectorgarciarabade noteonlagrangeinterpolationofixionthechebyshevandchebyshevlobattonodalsystemstheevencases
AT josemanuelgarciaamor noteonlagrangeinterpolationofixionthechebyshevandchebyshevlobattonodalsystemstheevencases