Definition of management zones in coffee production fields based on apparent soil electrical conductivity
Fertilizer application at variable rates requires dense sampling to determine the resulting field spatial variability. Defining management zones is a technique that facilitates the variable-rate application of agricultural inputs. The apparent electrical conductivity of the soil is an important fact...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universidade de São Paulo
2012-06-01
|
Series: | Scientia Agricola |
Subjects: | |
Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162012000300001 |
_version_ | 1818889661390520320 |
---|---|
author | Domingos Sárvio Magalhães Valente Daniel Marçal de Queiroz Francisco de Assis de Carvalho Pinto Nerilson Terra Santos Fábio Lúcio Santos |
author_facet | Domingos Sárvio Magalhães Valente Daniel Marçal de Queiroz Francisco de Assis de Carvalho Pinto Nerilson Terra Santos Fábio Lúcio Santos |
author_sort | Domingos Sárvio Magalhães Valente |
collection | DOAJ |
description | Fertilizer application at variable rates requires dense sampling to determine the resulting field spatial variability. Defining management zones is a technique that facilitates the variable-rate application of agricultural inputs. The apparent electrical conductivity of the soil is an important factor in explaining the variability of soil physical-chemical properties. Thus, the objective of this study was to define management zones for coffee (Coffea Arabica L.) production fields based on spatial variability of the apparent electrical conductivity of the soil. The resistivity method was used to measure the apparent soil electrical conductivity. Soil samples were collected to measure the chemical and physical soil properties. The maps of spatial variability were generated using ordinary kriging method. The fuzzy k-means algorithm was used to delimit the management zones. To analyze the agreement between the management zones and the soil properties, the kappa coefficients were calculated. The best results were obtained for the management zones defined using the apparent electrical conductivity of the soil and the digital elevation model. In this case, the kappa coefficient was 0.45 for potassium, which is an element that is associated with quality coffee. The other variable that had a high kappa coefficient was remaining phosphorous; the coefficient obtained was 0.49. The remaining phosphorus is an important parameter for determining which fertilizers and soil types to study. |
first_indexed | 2024-12-19T17:12:34Z |
format | Article |
id | doaj.art-d3d438ae002e45979a46c9ba23ae5948 |
institution | Directory Open Access Journal |
issn | 0103-9016 1678-992X |
language | English |
last_indexed | 2024-12-19T17:12:34Z |
publishDate | 2012-06-01 |
publisher | Universidade de São Paulo |
record_format | Article |
series | Scientia Agricola |
spelling | doaj.art-d3d438ae002e45979a46c9ba23ae59482022-12-21T20:12:58ZengUniversidade de São PauloScientia Agricola0103-90161678-992X2012-06-0169317317910.1590/S0103-90162012000300001Definition of management zones in coffee production fields based on apparent soil electrical conductivityDomingos Sárvio Magalhães ValenteDaniel Marçal de QueirozFrancisco de Assis de Carvalho PintoNerilson Terra SantosFábio Lúcio SantosFertilizer application at variable rates requires dense sampling to determine the resulting field spatial variability. Defining management zones is a technique that facilitates the variable-rate application of agricultural inputs. The apparent electrical conductivity of the soil is an important factor in explaining the variability of soil physical-chemical properties. Thus, the objective of this study was to define management zones for coffee (Coffea Arabica L.) production fields based on spatial variability of the apparent electrical conductivity of the soil. The resistivity method was used to measure the apparent soil electrical conductivity. Soil samples were collected to measure the chemical and physical soil properties. The maps of spatial variability were generated using ordinary kriging method. The fuzzy k-means algorithm was used to delimit the management zones. To analyze the agreement between the management zones and the soil properties, the kappa coefficients were calculated. The best results were obtained for the management zones defined using the apparent electrical conductivity of the soil and the digital elevation model. In this case, the kappa coefficient was 0.45 for potassium, which is an element that is associated with quality coffee. The other variable that had a high kappa coefficient was remaining phosphorous; the coefficient obtained was 0.49. The remaining phosphorus is an important parameter for determining which fertilizers and soil types to study.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162012000300001Coffea Arabica L.geostatisticsfuzzy k-meanssoil sensors |
spellingShingle | Domingos Sárvio Magalhães Valente Daniel Marçal de Queiroz Francisco de Assis de Carvalho Pinto Nerilson Terra Santos Fábio Lúcio Santos Definition of management zones in coffee production fields based on apparent soil electrical conductivity Scientia Agricola Coffea Arabica L. geostatistics fuzzy k-means soil sensors |
title | Definition of management zones in coffee production fields based on apparent soil electrical conductivity |
title_full | Definition of management zones in coffee production fields based on apparent soil electrical conductivity |
title_fullStr | Definition of management zones in coffee production fields based on apparent soil electrical conductivity |
title_full_unstemmed | Definition of management zones in coffee production fields based on apparent soil electrical conductivity |
title_short | Definition of management zones in coffee production fields based on apparent soil electrical conductivity |
title_sort | definition of management zones in coffee production fields based on apparent soil electrical conductivity |
topic | Coffea Arabica L. geostatistics fuzzy k-means soil sensors |
url | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162012000300001 |
work_keys_str_mv | AT domingossarviomagalhaesvalente definitionofmanagementzonesincoffeeproductionfieldsbasedonapparentsoilelectricalconductivity AT danielmarcaldequeiroz definitionofmanagementzonesincoffeeproductionfieldsbasedonapparentsoilelectricalconductivity AT franciscodeassisdecarvalhopinto definitionofmanagementzonesincoffeeproductionfieldsbasedonapparentsoilelectricalconductivity AT nerilsonterrasantos definitionofmanagementzonesincoffeeproductionfieldsbasedonapparentsoilelectricalconductivity AT fabioluciosantos definitionofmanagementzonesincoffeeproductionfieldsbasedonapparentsoilelectricalconductivity |