A Loop Quantum-Corrected Family of Chiral Cosmology Models

We construct and examine a holonomy-corrected chiral fields model of cosmological relevance. Specifically, we holonomize the Hamiltonian corresponding to a quintom field scenario with additional kinetic interaction (governed by the constant chiral metric, <inline-formula><math xmlns="h...

Full description

Bibliographic Details
Main Authors: Luis Rey Díaz-Barrón, Abraham Espinoza-García, Sinuhé Alejandro Pérez-Payán, J. Socorro
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Universe
Subjects:
Online Access:https://www.mdpi.com/2218-1997/10/2/88
Description
Summary:We construct and examine a holonomy-corrected chiral fields model of cosmological relevance. Specifically, we holonomize the Hamiltonian corresponding to a quintom field scenario with additional kinetic interaction (governed by the constant chiral metric, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>m</mi><mrow><mi>a</mi><mi>b</mi></mrow></msub></semantics></math></inline-formula>) on a flat FLRW background and contrast the resulting model with the corresponding purely classical system. In particular, it is shown that the single LQC bouncing stage is ensured to be realized, provided the full chiral kinetic energy function does not change sign during evolution. (As preparation, a particularly simple k-essence field is examined within the effective LQC scheme; some exact solutions are obtained in the process.) Additionally, under the said assumption, it is established that the landmark bouncing mechanism of standard (effective) LQC is still guaranteed to be featured even when taking any finite number of fields <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>ϕ</mi><mn>1</mn></msup><mo>,</mo><mo>…</mo><msup><mi>ϕ</mi><mi>m</mi></msup></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>m</mi><mrow><mi>a</mi><mi>b</mi></mrow></msub></semantics></math></inline-formula> to be dependent on such fields (the particular zero-potential case corresponding to a family of simple purely kinetic <i>k</i>-essence multi-field cosmology models).
ISSN:2218-1997