Osmolar Modulation Drives Reversible Cell Cycle Exit and Human Pluripotent Cell Differentiation via NF‐κВ and WNT Signaling

Abstract Terminally differentiated cells are commonly regarded as the most stable cell state in adult organisms, characterized by growth arrest while fulfilling their specialized functions. A better understanding of the mechanisms involved in promoting cell cycle exit will improve the ability to dif...

Full description

Bibliographic Details
Main Authors: Jonathan Sai‐Hong Chui, Teresa Izuel‐Idoype, Alessandra Qualizza, Rita Pires deAlmeida, Lindsey Piessens, Bernard K. van derVeer, Gert Vanmarcke, Aneta Malesa, Paraskevi Athanasouli, Ruben Boon, Joris Vriens, Leo vanGrunsven, Kian Peng Koh, Catherine M. Verfaillie, Frederic Lluis
Format: Article
Language:English
Published: Wiley 2024-02-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202307554
_version_ 1797305177841074176
author Jonathan Sai‐Hong Chui
Teresa Izuel‐Idoype
Alessandra Qualizza
Rita Pires deAlmeida
Lindsey Piessens
Bernard K. van derVeer
Gert Vanmarcke
Aneta Malesa
Paraskevi Athanasouli
Ruben Boon
Joris Vriens
Leo vanGrunsven
Kian Peng Koh
Catherine M. Verfaillie
Frederic Lluis
author_facet Jonathan Sai‐Hong Chui
Teresa Izuel‐Idoype
Alessandra Qualizza
Rita Pires deAlmeida
Lindsey Piessens
Bernard K. van derVeer
Gert Vanmarcke
Aneta Malesa
Paraskevi Athanasouli
Ruben Boon
Joris Vriens
Leo vanGrunsven
Kian Peng Koh
Catherine M. Verfaillie
Frederic Lluis
author_sort Jonathan Sai‐Hong Chui
collection DOAJ
description Abstract Terminally differentiated cells are commonly regarded as the most stable cell state in adult organisms, characterized by growth arrest while fulfilling their specialized functions. A better understanding of the mechanisms involved in promoting cell cycle exit will improve the ability to differentiate pluripotent cells into mature tissues for both pharmacological and therapeutic use. Here, it demonstrates that a hyperosmolar environment enforces a protective p53‐independent quiescent state in immature hepatoma cells and in pluripotent stem cell‐derived models of human hepatocytes and endothelial cells. Prolonged culture in hyperosmolar conditions stimulates changes in gene expression promoting functional cell maturation. Interestingly, hyperosmolar conditions do not only trigger growth arrest and cellular maturation but are also necessary to maintain this maturated state, as switching back to plasma osmolarity reverses the changes in expression of maturation and proliferative markers. Transcriptome analysis revealed sequential stages of osmolarity‐regulated growth arrest followed by cell maturation, mediated by activation of NF‐κВ, and repression of WNT signaling, respectively. This study reveals that a modulated increase in osmolarity serves as a biochemical signal to promote long‐term growth arrest and cellular maturation into different lineages, providing a practical method to generate differentiated hiPSCs that resemble their mature counterpart more closely.
first_indexed 2024-03-08T00:21:21Z
format Article
id doaj.art-d3f33e15b1534ffcbb0747b487db0584
institution Directory Open Access Journal
issn 2198-3844
language English
last_indexed 2024-03-08T00:21:21Z
publishDate 2024-02-01
publisher Wiley
record_format Article
series Advanced Science
spelling doaj.art-d3f33e15b1534ffcbb0747b487db05842024-02-16T08:29:37ZengWileyAdvanced Science2198-38442024-02-01117n/an/a10.1002/advs.202307554Osmolar Modulation Drives Reversible Cell Cycle Exit and Human Pluripotent Cell Differentiation via NF‐κВ and WNT SignalingJonathan Sai‐Hong Chui0Teresa Izuel‐Idoype1Alessandra Qualizza2Rita Pires deAlmeida3Lindsey Piessens4Bernard K. van derVeer5Gert Vanmarcke6Aneta Malesa7Paraskevi Athanasouli8Ruben Boon9Joris Vriens10Leo vanGrunsven11Kian Peng Koh12Catherine M. Verfaillie13Frederic Lluis14KU Leuven Department of Development and Regeneration Stem Cell Institute Herestraat 49 Leuven 3000 BelgiumKU Leuven Department of Development and Regeneration Stem Cell Institute Herestraat 49 Leuven 3000 BelgiumKU Leuven Department of Development and Regeneration Stem Cell Institute Herestraat 49 Leuven 3000 BelgiumKU Leuven Department of Development and Regeneration Stem Cell Institute Herestraat 49 Leuven 3000 BelgiumKU Leuven Department of Development and Regeneration Stem Cell Institute Herestraat 49 Leuven 3000 BelgiumKU Leuven Department of Development and Regeneration Stem Cell Institute Herestraat 49 Leuven 3000 BelgiumKU Leuven Department of Development and Regeneration Stem Cell Institute Herestraat 49 Leuven 3000 BelgiumKU Leuven Department of Development and Regeneration Stem Cell Institute Herestraat 49 Leuven 3000 BelgiumKU Leuven Department of Development and Regeneration Stem Cell Institute Herestraat 49 Leuven 3000 BelgiumKU Leuven Department of Development and Regeneration Stem Cell Institute Herestraat 49 Leuven 3000 BelgiumLaboratory of Endometrium, Endometriosis and Reproductive Medicine Department of Development and Regeneration KU Leuven Herestraat 49 Leuven 3000 BelgiumLiver Cell Biology Research Group Vrije Universiteit Brussel Laarbeeklaan 103 Brussels 1090 BelgiumKU Leuven Department of Development and Regeneration Stem Cell Institute Herestraat 49 Leuven 3000 BelgiumKU Leuven Department of Development and Regeneration Stem Cell Institute Herestraat 49 Leuven 3000 BelgiumKU Leuven Department of Development and Regeneration Stem Cell Institute Herestraat 49 Leuven 3000 BelgiumAbstract Terminally differentiated cells are commonly regarded as the most stable cell state in adult organisms, characterized by growth arrest while fulfilling their specialized functions. A better understanding of the mechanisms involved in promoting cell cycle exit will improve the ability to differentiate pluripotent cells into mature tissues for both pharmacological and therapeutic use. Here, it demonstrates that a hyperosmolar environment enforces a protective p53‐independent quiescent state in immature hepatoma cells and in pluripotent stem cell‐derived models of human hepatocytes and endothelial cells. Prolonged culture in hyperosmolar conditions stimulates changes in gene expression promoting functional cell maturation. Interestingly, hyperosmolar conditions do not only trigger growth arrest and cellular maturation but are also necessary to maintain this maturated state, as switching back to plasma osmolarity reverses the changes in expression of maturation and proliferative markers. Transcriptome analysis revealed sequential stages of osmolarity‐regulated growth arrest followed by cell maturation, mediated by activation of NF‐κВ, and repression of WNT signaling, respectively. This study reveals that a modulated increase in osmolarity serves as a biochemical signal to promote long‐term growth arrest and cellular maturation into different lineages, providing a practical method to generate differentiated hiPSCs that resemble their mature counterpart more closely.https://doi.org/10.1002/advs.202307554hepatic modelstem cell differentiationcell cycleWNT signalingNF‐kB signaling
spellingShingle Jonathan Sai‐Hong Chui
Teresa Izuel‐Idoype
Alessandra Qualizza
Rita Pires deAlmeida
Lindsey Piessens
Bernard K. van derVeer
Gert Vanmarcke
Aneta Malesa
Paraskevi Athanasouli
Ruben Boon
Joris Vriens
Leo vanGrunsven
Kian Peng Koh
Catherine M. Verfaillie
Frederic Lluis
Osmolar Modulation Drives Reversible Cell Cycle Exit and Human Pluripotent Cell Differentiation via NF‐κВ and WNT Signaling
Advanced Science
hepatic model
stem cell differentiation
cell cycle
WNT signaling
NF‐kB signaling
title Osmolar Modulation Drives Reversible Cell Cycle Exit and Human Pluripotent Cell Differentiation via NF‐κВ and WNT Signaling
title_full Osmolar Modulation Drives Reversible Cell Cycle Exit and Human Pluripotent Cell Differentiation via NF‐κВ and WNT Signaling
title_fullStr Osmolar Modulation Drives Reversible Cell Cycle Exit and Human Pluripotent Cell Differentiation via NF‐κВ and WNT Signaling
title_full_unstemmed Osmolar Modulation Drives Reversible Cell Cycle Exit and Human Pluripotent Cell Differentiation via NF‐κВ and WNT Signaling
title_short Osmolar Modulation Drives Reversible Cell Cycle Exit and Human Pluripotent Cell Differentiation via NF‐κВ and WNT Signaling
title_sort osmolar modulation drives reversible cell cycle exit and human pluripotent cell differentiation via nf κв and wnt signaling
topic hepatic model
stem cell differentiation
cell cycle
WNT signaling
NF‐kB signaling
url https://doi.org/10.1002/advs.202307554
work_keys_str_mv AT jonathansaihongchui osmolarmodulationdrivesreversiblecellcycleexitandhumanpluripotentcelldifferentiationvianfkvandwntsignaling
AT teresaizuelidoype osmolarmodulationdrivesreversiblecellcycleexitandhumanpluripotentcelldifferentiationvianfkvandwntsignaling
AT alessandraqualizza osmolarmodulationdrivesreversiblecellcycleexitandhumanpluripotentcelldifferentiationvianfkvandwntsignaling
AT ritapiresdealmeida osmolarmodulationdrivesreversiblecellcycleexitandhumanpluripotentcelldifferentiationvianfkvandwntsignaling
AT lindseypiessens osmolarmodulationdrivesreversiblecellcycleexitandhumanpluripotentcelldifferentiationvianfkvandwntsignaling
AT bernardkvanderveer osmolarmodulationdrivesreversiblecellcycleexitandhumanpluripotentcelldifferentiationvianfkvandwntsignaling
AT gertvanmarcke osmolarmodulationdrivesreversiblecellcycleexitandhumanpluripotentcelldifferentiationvianfkvandwntsignaling
AT anetamalesa osmolarmodulationdrivesreversiblecellcycleexitandhumanpluripotentcelldifferentiationvianfkvandwntsignaling
AT paraskeviathanasouli osmolarmodulationdrivesreversiblecellcycleexitandhumanpluripotentcelldifferentiationvianfkvandwntsignaling
AT rubenboon osmolarmodulationdrivesreversiblecellcycleexitandhumanpluripotentcelldifferentiationvianfkvandwntsignaling
AT jorisvriens osmolarmodulationdrivesreversiblecellcycleexitandhumanpluripotentcelldifferentiationvianfkvandwntsignaling
AT leovangrunsven osmolarmodulationdrivesreversiblecellcycleexitandhumanpluripotentcelldifferentiationvianfkvandwntsignaling
AT kianpengkoh osmolarmodulationdrivesreversiblecellcycleexitandhumanpluripotentcelldifferentiationvianfkvandwntsignaling
AT catherinemverfaillie osmolarmodulationdrivesreversiblecellcycleexitandhumanpluripotentcelldifferentiationvianfkvandwntsignaling
AT fredericlluis osmolarmodulationdrivesreversiblecellcycleexitandhumanpluripotentcelldifferentiationvianfkvandwntsignaling