Hydroxyl-Decorated Diiron Complex as a [FeFe]-Hydrogenase Active Site Model Complex: Light-Driven Photocatalytic Activity and Heterogenization on Ethylene-Bridged Periodic Mesoporous Organosilica

A biomimetic model complex of the [FeFe]-hydrogenase active site (FeFeOH) with an ethylene bridge and a pendant hydroxyl group has been synthesized, characterized and evaluated as catalyst for the light-driven hydrogen production. The interaction of the hydroxyl group present in the complex with 3-i...

Full description

Bibliographic Details
Main Authors: Juan Amaro-Gahete, Dolores Esquivel, Mariia V. Pavliuk, César Jiménez-Sanchidrián, Haining Tian, Sascha Ott, Francisco J. Romero-Salguero
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Catalysts
Subjects:
Online Access:https://www.mdpi.com/2073-4344/12/3/254
Description
Summary:A biomimetic model complex of the [FeFe]-hydrogenase active site (FeFeOH) with an ethylene bridge and a pendant hydroxyl group has been synthesized, characterized and evaluated as catalyst for the light-driven hydrogen production. The interaction of the hydroxyl group present in the complex with 3-isocyanopropyltriethoxysilane provided a carbamate triethoxysilane bearing a diiron dithiolate complex (NCOFeFe), thus becoming a potentially promising candidate for anchoring on heterogeneous supports. As a proof of concept, the NCOFeFe precursor was anchored by a grafting procedure into a periodic mesoporous organosilica with ethane bridges (EthanePMO@NCOFeFe). Both molecular and heterogenized complexes were tested as catalysts for light-driven hydrogen generation in aqueous solutions. The photocatalytic conditions were optimized for the homogenous complex by varying the reaction time, pH, amount of the catalyst or photosensitizer, photon flux, and the type of light source (light-emitting diode (LED) and Xe lamp). It was shown that the molecular FeFeOH diiron complex achieved a decent turnover number (TON) of 70 after 6 h, while NCOFeFe and EthanePMO@NCOFeFe had slightly lower activities showing TONs of 37 and 5 at 6 h, respectively.
ISSN:2073-4344