On Nonnil-<i>S</i>-Noetherian Rings
Let <i>R</i> be a commutative ring with identity, and let <i>S</i> be a (not necessarily saturated) multiplicative subset of <i>R</i>. We define <i>R</i> to be a nonnil-<i>S</i>-Noetherian ring if each nonnil ideal of <i>R</i> i...
Main Authors: | Min Jae Kwon, Jung Wook Lim |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-08-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/9/1428 |
Similar Items
-
On nonnil-S-Noetherian and nonnil-u-S-Noetherian rings
by: Mahdou Najib, et al.
Published: (2024-04-01) -
On nonnil-coherent modules and nonnil-Noetherian modules
by: Haddaoui Younes El, et al.
Published: (2022-11-01) -
About j{\mathscr{j}}-Noetherian rings
by: Alhazmy Khaled, et al.
Published: (2024-05-01) -
S-Noetherian rings, modules and their generalizations
by: Tushar Singh, et al.
Published: (2023-09-01) -
Simple noetherian rings /
by: Cozzens, John, 1942-, et al.
Published: (1975)