Summary: | The transient elongational data set obtained by filament-stretching rheometry of four commercial high-density polyethylene (HDPE) melts with different molecular characteristics was reported by Morelly and Alvarez [Rheologica Acta 59, 797–807 (2020)]. We use the Hierarchical Multi-mode Molecular Stress Function (HMMSF) model of Narimissa and Wagner [Rheol. Acta 54, 779–791 (2015), and J. Rheology 60, 625–636 (2016)] for linear and long-chain branched (LCB) polymer melts to analyze the extensional rheological behavior of the four HDPEs with different polydispersity and long-chain branching content. Model predictions based solely on the linear-viscoelastic spectrum and a single nonlinear parameter, the dilution modulus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>G</mi><mi>D</mi></msub></mrow></semantics></math></inline-formula> for extensional flows reveals good agreement with elongational stress growth data. The relationship of dilution modulus <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>G</mi><mi>D</mi></msub></mrow></semantics></math></inline-formula> to molecular characteristics (e.g., polydispersity index (PDI), long-chain branching index (LCBI), disengagement time <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>τ</mi><mi>d</mi></msub></mrow></semantics></math></inline-formula>) of the high-density polyethylene melts are presented in this paper. A new measure of the maximum strain hardening factor (MSHF) is proposed, which allows separation of the effects of orientation and chain stretching.
|