Loitering at the hilltop on exterior domains

In this paper we prove the existence of an infinite number of radial solutions of $\Delta u + f(u)= 0$ on the exterior of the ball of radius $R>0$ centered at the origin and $f$ is odd with $f<0$ on $(0, \beta) $, $f>0$ on $(\beta, \delta),$ and $f\equiv 0$ for $u> \delta$. The primitive...

Full description

Bibliographic Details
Main Author: Joseph Iaia
Format: Article
Language:English
Published: University of Szeged 2015-11-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4163
_version_ 1797830607552643072
author Joseph Iaia
author_facet Joseph Iaia
author_sort Joseph Iaia
collection DOAJ
description In this paper we prove the existence of an infinite number of radial solutions of $\Delta u + f(u)= 0$ on the exterior of the ball of radius $R>0$ centered at the origin and $f$ is odd with $f<0$ on $(0, \beta) $, $f>0$ on $(\beta, \delta),$ and $f\equiv 0$ for $u> \delta$. The primitive $F(u) = \int_{0}^{u} f(t) \, dt$ has a "hilltop" at $u=\delta$ which allows one to use the shooting method and ODE techniques to prove the existence of solutions.
first_indexed 2024-04-09T13:38:47Z
format Article
id doaj.art-d4262e6406674bf098484d67df5ff359
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:38:47Z
publishDate 2015-11-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-d4262e6406674bf098484d67df5ff3592023-05-09T07:53:05ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752015-11-0120158211110.14232/ejqtde.2015.1.824163Loitering at the hilltop on exterior domainsJoseph Iaia0University of North Texas, TX, U.S.A.In this paper we prove the existence of an infinite number of radial solutions of $\Delta u + f(u)= 0$ on the exterior of the ball of radius $R>0$ centered at the origin and $f$ is odd with $f<0$ on $(0, \beta) $, $f>0$ on $(\beta, \delta),$ and $f\equiv 0$ for $u> \delta$. The primitive $F(u) = \int_{0}^{u} f(t) \, dt$ has a "hilltop" at $u=\delta$ which allows one to use the shooting method and ODE techniques to prove the existence of solutions.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4163radialhilltopsemilinear
spellingShingle Joseph Iaia
Loitering at the hilltop on exterior domains
Electronic Journal of Qualitative Theory of Differential Equations
radial
hilltop
semilinear
title Loitering at the hilltop on exterior domains
title_full Loitering at the hilltop on exterior domains
title_fullStr Loitering at the hilltop on exterior domains
title_full_unstemmed Loitering at the hilltop on exterior domains
title_short Loitering at the hilltop on exterior domains
title_sort loitering at the hilltop on exterior domains
topic radial
hilltop
semilinear
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=4163
work_keys_str_mv AT josephiaia loiteringatthehilltoponexteriordomains