Melting relations of Ca–Mg carbonates and trace element signature of carbonate melts up to 9 GPa – a proxy for melting of carbonated mantle lithologies

<p>The most profound consequences of the presence of Ca–Mg carbonates (CaCO<span class="inline-formula"><sub>3</sub></span>–MgCO<span class="inline-formula"><sub>3</sub></span>) in the Earth's upper mantle may be to lower...

Full description

Bibliographic Details
Main Authors: M. J. Sieber, M. Wilke, O. Appelt, M. Oelze, M. Koch-Müller
Format: Article
Language:English
Published: Copernicus Publications 2022-10-01
Series:European Journal of Mineralogy
Online Access:https://ejm.copernicus.org/articles/34/411/2022/ejm-34-411-2022.pdf
Description
Summary:<p>The most profound consequences of the presence of Ca–Mg carbonates (CaCO<span class="inline-formula"><sub>3</sub></span>–MgCO<span class="inline-formula"><sub>3</sub></span>) in the Earth's upper mantle may be to lower the melting temperatures of the mantle and control the melt composition. Low-degree partial melting of a carbonate-bearing mantle produces CO<span class="inline-formula"><sub>2</sub></span>-rich, silica-poor melts compositionally imposed by the melting relations of carbonates. Thus, understanding the melting relations in the CaCO<span class="inline-formula"><sub>3</sub></span>–MgCO<span class="inline-formula"><sub>3</sub></span> system facilitates the interpretation of natural carbonate-bearing silicate systems.</p> <p>We report the melting relations of the CaCO<span class="inline-formula"><sub>3</sub></span>–MgCO<span class="inline-formula"><sub>3</sub></span> system and the partition coefficient of trace elements between carbonates and carbonate melt from experiments at high pressure (6 and 9 GPa) and temperature (1300–1800 <span class="inline-formula"><sup>∘</sup></span>C) using a rocking multi-anvil press. In the absence of water, Ca–Mg carbonates are stable along geothermal gradients typical of subducting slabs. Ca–Mg carbonates (<span class="inline-formula">∼</span> Mg<span class="inline-formula"><sub>0.1–0.9</sub></span>Ca<span class="inline-formula"><sub>0.9–0.1</sub></span>CO<span class="inline-formula"><sub>3</sub></span>) partially melt beneath mid-ocean ridges and in plume settings. Ca–Mg carbonates melt incongruently, forming periclase crystals and carbonate melt between 4 and 9 GPa. Furthermore, we show that the rare earth element (REE) signature of Group-I kimberlites, namely strong REE fractionation and depletion of heavy REE relative to the primitive mantle, is resembled by carbonate melt in equilibrium with Ca-bearing magnesite and periclase at 6 and 9 GPa. This suggests that the dolomite–magnesite join of the CaCO<span class="inline-formula"><sub>3</sub></span>–MgCO<span class="inline-formula"><sub>3</sub></span> system might be useful to approximate the REE signature of carbonate-rich melts parental to kimberlites.</p>
ISSN:0935-1221
1617-4011