Melting relations of Ca–Mg carbonates and trace element signature of carbonate melts up to 9 GPa – a proxy for melting of carbonated mantle lithologies

<p>The most profound consequences of the presence of Ca–Mg carbonates (CaCO<span class="inline-formula"><sub>3</sub></span>–MgCO<span class="inline-formula"><sub>3</sub></span>) in the Earth's upper mantle may be to lower...

Full description

Bibliographic Details
Main Authors: M. J. Sieber, M. Wilke, O. Appelt, M. Oelze, M. Koch-Müller
Format: Article
Language:English
Published: Copernicus Publications 2022-10-01
Series:European Journal of Mineralogy
Online Access:https://ejm.copernicus.org/articles/34/411/2022/ejm-34-411-2022.pdf
_version_ 1811228792000086016
author M. J. Sieber
M. J. Sieber
M. Wilke
O. Appelt
M. Oelze
M. Oelze
M. Koch-Müller
author_facet M. J. Sieber
M. J. Sieber
M. Wilke
O. Appelt
M. Oelze
M. Oelze
M. Koch-Müller
author_sort M. J. Sieber
collection DOAJ
description <p>The most profound consequences of the presence of Ca–Mg carbonates (CaCO<span class="inline-formula"><sub>3</sub></span>–MgCO<span class="inline-formula"><sub>3</sub></span>) in the Earth's upper mantle may be to lower the melting temperatures of the mantle and control the melt composition. Low-degree partial melting of a carbonate-bearing mantle produces CO<span class="inline-formula"><sub>2</sub></span>-rich, silica-poor melts compositionally imposed by the melting relations of carbonates. Thus, understanding the melting relations in the CaCO<span class="inline-formula"><sub>3</sub></span>–MgCO<span class="inline-formula"><sub>3</sub></span> system facilitates the interpretation of natural carbonate-bearing silicate systems.</p> <p>We report the melting relations of the CaCO<span class="inline-formula"><sub>3</sub></span>–MgCO<span class="inline-formula"><sub>3</sub></span> system and the partition coefficient of trace elements between carbonates and carbonate melt from experiments at high pressure (6 and 9 GPa) and temperature (1300–1800 <span class="inline-formula"><sup>∘</sup></span>C) using a rocking multi-anvil press. In the absence of water, Ca–Mg carbonates are stable along geothermal gradients typical of subducting slabs. Ca–Mg carbonates (<span class="inline-formula">∼</span> Mg<span class="inline-formula"><sub>0.1–0.9</sub></span>Ca<span class="inline-formula"><sub>0.9–0.1</sub></span>CO<span class="inline-formula"><sub>3</sub></span>) partially melt beneath mid-ocean ridges and in plume settings. Ca–Mg carbonates melt incongruently, forming periclase crystals and carbonate melt between 4 and 9 GPa. Furthermore, we show that the rare earth element (REE) signature of Group-I kimberlites, namely strong REE fractionation and depletion of heavy REE relative to the primitive mantle, is resembled by carbonate melt in equilibrium with Ca-bearing magnesite and periclase at 6 and 9 GPa. This suggests that the dolomite–magnesite join of the CaCO<span class="inline-formula"><sub>3</sub></span>–MgCO<span class="inline-formula"><sub>3</sub></span> system might be useful to approximate the REE signature of carbonate-rich melts parental to kimberlites.</p>
first_indexed 2024-04-12T10:03:35Z
format Article
id doaj.art-d44060524ac944679c551dff34860eae
institution Directory Open Access Journal
issn 0935-1221
1617-4011
language English
last_indexed 2024-04-12T10:03:35Z
publishDate 2022-10-01
publisher Copernicus Publications
record_format Article
series European Journal of Mineralogy
spelling doaj.art-d44060524ac944679c551dff34860eae2022-12-22T03:37:30ZengCopernicus PublicationsEuropean Journal of Mineralogy0935-12211617-40112022-10-013441142410.5194/ejm-34-411-2022Melting relations of Ca–Mg carbonates and trace element signature of carbonate melts up to 9&thinsp;GPa – a proxy for melting of carbonated mantle lithologiesM. J. Sieber0M. J. Sieber1M. Wilke2O. Appelt3M. Oelze4M. Oelze5M. Koch-Müller6Section 3.6 and 3.1, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germanypresent address: Mineralogy, Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Straße 24–25, 14476 Potsdam, GermanyMineralogy, Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Straße 24–25, 14476 Potsdam, GermanySection 3.6 and 3.1, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, GermanySection 3.6 and 3.1, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germanypresent address: Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, GermanySection 3.6 and 3.1, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany<p>The most profound consequences of the presence of Ca–Mg carbonates (CaCO<span class="inline-formula"><sub>3</sub></span>–MgCO<span class="inline-formula"><sub>3</sub></span>) in the Earth's upper mantle may be to lower the melting temperatures of the mantle and control the melt composition. Low-degree partial melting of a carbonate-bearing mantle produces CO<span class="inline-formula"><sub>2</sub></span>-rich, silica-poor melts compositionally imposed by the melting relations of carbonates. Thus, understanding the melting relations in the CaCO<span class="inline-formula"><sub>3</sub></span>–MgCO<span class="inline-formula"><sub>3</sub></span> system facilitates the interpretation of natural carbonate-bearing silicate systems.</p> <p>We report the melting relations of the CaCO<span class="inline-formula"><sub>3</sub></span>–MgCO<span class="inline-formula"><sub>3</sub></span> system and the partition coefficient of trace elements between carbonates and carbonate melt from experiments at high pressure (6 and 9 GPa) and temperature (1300–1800 <span class="inline-formula"><sup>∘</sup></span>C) using a rocking multi-anvil press. In the absence of water, Ca–Mg carbonates are stable along geothermal gradients typical of subducting slabs. Ca–Mg carbonates (<span class="inline-formula">∼</span> Mg<span class="inline-formula"><sub>0.1–0.9</sub></span>Ca<span class="inline-formula"><sub>0.9–0.1</sub></span>CO<span class="inline-formula"><sub>3</sub></span>) partially melt beneath mid-ocean ridges and in plume settings. Ca–Mg carbonates melt incongruently, forming periclase crystals and carbonate melt between 4 and 9 GPa. Furthermore, we show that the rare earth element (REE) signature of Group-I kimberlites, namely strong REE fractionation and depletion of heavy REE relative to the primitive mantle, is resembled by carbonate melt in equilibrium with Ca-bearing magnesite and periclase at 6 and 9 GPa. This suggests that the dolomite–magnesite join of the CaCO<span class="inline-formula"><sub>3</sub></span>–MgCO<span class="inline-formula"><sub>3</sub></span> system might be useful to approximate the REE signature of carbonate-rich melts parental to kimberlites.</p>https://ejm.copernicus.org/articles/34/411/2022/ejm-34-411-2022.pdf
spellingShingle M. J. Sieber
M. J. Sieber
M. Wilke
O. Appelt
M. Oelze
M. Oelze
M. Koch-Müller
Melting relations of Ca–Mg carbonates and trace element signature of carbonate melts up to 9&thinsp;GPa – a proxy for melting of carbonated mantle lithologies
European Journal of Mineralogy
title Melting relations of Ca–Mg carbonates and trace element signature of carbonate melts up to 9&thinsp;GPa – a proxy for melting of carbonated mantle lithologies
title_full Melting relations of Ca–Mg carbonates and trace element signature of carbonate melts up to 9&thinsp;GPa – a proxy for melting of carbonated mantle lithologies
title_fullStr Melting relations of Ca–Mg carbonates and trace element signature of carbonate melts up to 9&thinsp;GPa – a proxy for melting of carbonated mantle lithologies
title_full_unstemmed Melting relations of Ca–Mg carbonates and trace element signature of carbonate melts up to 9&thinsp;GPa – a proxy for melting of carbonated mantle lithologies
title_short Melting relations of Ca–Mg carbonates and trace element signature of carbonate melts up to 9&thinsp;GPa – a proxy for melting of carbonated mantle lithologies
title_sort melting relations of ca mg carbonates and trace element signature of carbonate melts up to 9 thinsp gpa a proxy for melting of carbonated mantle lithologies
url https://ejm.copernicus.org/articles/34/411/2022/ejm-34-411-2022.pdf
work_keys_str_mv AT mjsieber meltingrelationsofcamgcarbonatesandtraceelementsignatureofcarbonatemeltsupto9thinspgpaaproxyformeltingofcarbonatedmantlelithologies
AT mjsieber meltingrelationsofcamgcarbonatesandtraceelementsignatureofcarbonatemeltsupto9thinspgpaaproxyformeltingofcarbonatedmantlelithologies
AT mwilke meltingrelationsofcamgcarbonatesandtraceelementsignatureofcarbonatemeltsupto9thinspgpaaproxyformeltingofcarbonatedmantlelithologies
AT oappelt meltingrelationsofcamgcarbonatesandtraceelementsignatureofcarbonatemeltsupto9thinspgpaaproxyformeltingofcarbonatedmantlelithologies
AT moelze meltingrelationsofcamgcarbonatesandtraceelementsignatureofcarbonatemeltsupto9thinspgpaaproxyformeltingofcarbonatedmantlelithologies
AT moelze meltingrelationsofcamgcarbonatesandtraceelementsignatureofcarbonatemeltsupto9thinspgpaaproxyformeltingofcarbonatedmantlelithologies
AT mkochmuller meltingrelationsofcamgcarbonatesandtraceelementsignatureofcarbonatemeltsupto9thinspgpaaproxyformeltingofcarbonatedmantlelithologies