Azo dye removal via surfactant-assisted polyvinylidene fluoride membrane
Background: Recently, concerns have been raised regarding the environmental and public health safety of azo dyes, the most widely used synthetic dyes. The membrane technique has been introduced as one of the efficient methods for dye removal treatments. Polyvinylidene fluoride (PVDF) membrane man...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Kerman University of Medical Sciences
2021-02-01
|
Series: | Environmental Health Engineering and Management |
Subjects: | |
Online Access: | http://ehemj.com/article-1-707-en.pdf |
Summary: | Background: Recently, concerns have been raised regarding the environmental and public health safety
of azo dyes, the most widely used synthetic dyes. The membrane technique has been introduced as
one of the efficient methods for dye removal treatments. Polyvinylidene fluoride (PVDF) membrane
manipulated by surfactants was studied for removal of the azo dye, carmoisine.
Methods: PVDF membrane was prepared via non-solvent-induced phase separation (NIPS) and used to
remove the azo dye, carmoisine. Three nonionic surfactants including Tween 20, Tween 60, and Tween
80 were used individually as additives in casting solutions to improve PVDF membrane properties.
Results: Fourier-transform infrared spectroscopy (FTIR) demonstrated the presence of functional
groups of carbonyl (C=O) and hydroxyl (OH), assigned to Tween molecules, in the membrane chemical
structure. All Tween species caused a decrease in the surface hydrophobicity of PVDF membranes
illustrated by the reduced contact angles. Each Tween at a 2% concentration in the dope solution led to
an increase in the pore-size of PVDF membranes, which was estimated by scanning electron microscopy
(SEM). However, this impact was reversed at Tween concentrations of 4%. Membranes were assessed
for dye removal efficiency and permeate flux in a cross-flow system. Permeability of PVDF membranes
improved (~78%) with adding Tween 80 at a concentration of 2%. Tween 60 at a 2% concentration
resulted in a ~45% increase in dye removal efficiency of PVDF membranes. And, atomic force
microscopy (AFM) showed that Tween 60 increased membrane surface roughness.
Conclusion: Surfactant-mediated changes in the surface properties of PVDF membrane improved dye
removal efficacy. |
---|---|
ISSN: | 2423-3765 2423-4311 |