Associating transcriptomics data with inflammatory markers to understand tumour microenvironment in hepatocellular carcinoma

Abstract Background Liver cancer is the fourth leading cause of cancer‐related death globally which is estimated to reach more than 1 million deaths a year by 2030. Among liver cancer types, hepatocellular carcinoma (HCC) accounts for approximately 90% of the cases and is known to have a tumour prom...

Full description

Bibliographic Details
Main Authors: Basak Bahcivanci, Roshan Shafiha, Georgios V. Gkoutos, Animesh Acharjee
Format: Article
Language:English
Published: Wiley 2023-01-01
Series:Cancer Medicine
Subjects:
Online Access:https://doi.org/10.1002/cam4.4941
_version_ 1797950834521145344
author Basak Bahcivanci
Roshan Shafiha
Georgios V. Gkoutos
Animesh Acharjee
author_facet Basak Bahcivanci
Roshan Shafiha
Georgios V. Gkoutos
Animesh Acharjee
author_sort Basak Bahcivanci
collection DOAJ
description Abstract Background Liver cancer is the fourth leading cause of cancer‐related death globally which is estimated to reach more than 1 million deaths a year by 2030. Among liver cancer types, hepatocellular carcinoma (HCC) accounts for approximately 90% of the cases and is known to have a tumour promoting inflammation regardless of its underlying aetiology. However, current promising treatment approaches, such as immunotherapy, are partially effective for most of the patients due to the immunosuppressive nature of the tumour microenvironment (TME). Therefore, there is an urgent need to fully understand TME in HCC and discover new immune markers to eliminate resistance to immunotherapy. Methods We analyse three microarray datasets, using unsupervised and supervised methods, in an effort to discover signature genes. First, univariate, and multivariate, feature selection methods, such as the Boruta algorithm, are applied. Subsequently, an optimisation procedure, which utilises random forest algorithm with three dataset pairs combinations, is performed. The resulting optimal gene sets are then combined and further subjected to network analysis and pathway enrichment analysis so as to obtain information related to their biological relevance. The microarray datasets were analysed via the MCP‐counter, CIBERSORT, TIMER, EPIC, and quanTIseq deconvolution methods and an estimation of cell type abundances for each dataset sample were identified. The differences in the cell type abundances, between the adjacent and tumour sample groups, were then assessed using a Wilcoxon Rank Sum test (p‐value < 0.05). Results The optimal gene signature sets, derived from each of the data pairs combination, achieved AUC values ranging from 0.959 to 0.988 in external validation sets using Random Forest model. CLEC1B and PTTG1 genes are retrieved across each optimal set. Among the signature genes, PTTG1, AURKA, and UBE2C genes are found to be involved in the regulation of mitotic sister chromatid separation and anaphase‐promoting complex (APC) dependent catabolic process (adjusted p‐value < 0.001). Additionally, the application of deconvolution algorithms revealed significant changes in cell type abundances of Regulatory T (Treg) cells, M0 and M1 macrophages, and T CD8+ cells between adjacent and tumour samples. Conclusion We identified ECM1 gene as a potential immune‐related marker acting through immune cell migration and macrophage polarisation. Our results indicate that macrophages, such as M0 macrophage and M1 macrophage cells, undergo significant changes in HCC TME. Moreover, our immune deconvolution approach revealed significant infiltration of Treg cells and M0 macrophages, and a significant decrease in T CD8+ cells and M1 macrophages in tumour samples.
first_indexed 2024-04-10T22:22:24Z
format Article
id doaj.art-d44cf514e1fc48fab6ee70707453475c
institution Directory Open Access Journal
issn 2045-7634
language English
last_indexed 2024-04-10T22:22:24Z
publishDate 2023-01-01
publisher Wiley
record_format Article
series Cancer Medicine
spelling doaj.art-d44cf514e1fc48fab6ee70707453475c2023-01-17T17:10:25ZengWileyCancer Medicine2045-76342023-01-0112169671110.1002/cam4.4941Associating transcriptomics data with inflammatory markers to understand tumour microenvironment in hepatocellular carcinomaBasak Bahcivanci0Roshan Shafiha1Georgios V. Gkoutos2Animesh Acharjee3College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology University of Birmingham Birmingham UKCollege of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology University of Birmingham Birmingham UKCollege of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology University of Birmingham Birmingham UKCollege of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology University of Birmingham Birmingham UKAbstract Background Liver cancer is the fourth leading cause of cancer‐related death globally which is estimated to reach more than 1 million deaths a year by 2030. Among liver cancer types, hepatocellular carcinoma (HCC) accounts for approximately 90% of the cases and is known to have a tumour promoting inflammation regardless of its underlying aetiology. However, current promising treatment approaches, such as immunotherapy, are partially effective for most of the patients due to the immunosuppressive nature of the tumour microenvironment (TME). Therefore, there is an urgent need to fully understand TME in HCC and discover new immune markers to eliminate resistance to immunotherapy. Methods We analyse three microarray datasets, using unsupervised and supervised methods, in an effort to discover signature genes. First, univariate, and multivariate, feature selection methods, such as the Boruta algorithm, are applied. Subsequently, an optimisation procedure, which utilises random forest algorithm with three dataset pairs combinations, is performed. The resulting optimal gene sets are then combined and further subjected to network analysis and pathway enrichment analysis so as to obtain information related to their biological relevance. The microarray datasets were analysed via the MCP‐counter, CIBERSORT, TIMER, EPIC, and quanTIseq deconvolution methods and an estimation of cell type abundances for each dataset sample were identified. The differences in the cell type abundances, between the adjacent and tumour sample groups, were then assessed using a Wilcoxon Rank Sum test (p‐value < 0.05). Results The optimal gene signature sets, derived from each of the data pairs combination, achieved AUC values ranging from 0.959 to 0.988 in external validation sets using Random Forest model. CLEC1B and PTTG1 genes are retrieved across each optimal set. Among the signature genes, PTTG1, AURKA, and UBE2C genes are found to be involved in the regulation of mitotic sister chromatid separation and anaphase‐promoting complex (APC) dependent catabolic process (adjusted p‐value < 0.001). Additionally, the application of deconvolution algorithms revealed significant changes in cell type abundances of Regulatory T (Treg) cells, M0 and M1 macrophages, and T CD8+ cells between adjacent and tumour samples. Conclusion We identified ECM1 gene as a potential immune‐related marker acting through immune cell migration and macrophage polarisation. Our results indicate that macrophages, such as M0 macrophage and M1 macrophage cells, undergo significant changes in HCC TME. Moreover, our immune deconvolution approach revealed significant infiltration of Treg cells and M0 macrophages, and a significant decrease in T CD8+ cells and M1 macrophages in tumour samples.https://doi.org/10.1002/cam4.4941gene signaturehepatocellular carcinomaimmune deconvolutiontumor microenvironment
spellingShingle Basak Bahcivanci
Roshan Shafiha
Georgios V. Gkoutos
Animesh Acharjee
Associating transcriptomics data with inflammatory markers to understand tumour microenvironment in hepatocellular carcinoma
Cancer Medicine
gene signature
hepatocellular carcinoma
immune deconvolution
tumor microenvironment
title Associating transcriptomics data with inflammatory markers to understand tumour microenvironment in hepatocellular carcinoma
title_full Associating transcriptomics data with inflammatory markers to understand tumour microenvironment in hepatocellular carcinoma
title_fullStr Associating transcriptomics data with inflammatory markers to understand tumour microenvironment in hepatocellular carcinoma
title_full_unstemmed Associating transcriptomics data with inflammatory markers to understand tumour microenvironment in hepatocellular carcinoma
title_short Associating transcriptomics data with inflammatory markers to understand tumour microenvironment in hepatocellular carcinoma
title_sort associating transcriptomics data with inflammatory markers to understand tumour microenvironment in hepatocellular carcinoma
topic gene signature
hepatocellular carcinoma
immune deconvolution
tumor microenvironment
url https://doi.org/10.1002/cam4.4941
work_keys_str_mv AT basakbahcivanci associatingtranscriptomicsdatawithinflammatorymarkerstounderstandtumourmicroenvironmentinhepatocellularcarcinoma
AT roshanshafiha associatingtranscriptomicsdatawithinflammatorymarkerstounderstandtumourmicroenvironmentinhepatocellularcarcinoma
AT georgiosvgkoutos associatingtranscriptomicsdatawithinflammatorymarkerstounderstandtumourmicroenvironmentinhepatocellularcarcinoma
AT animeshacharjee associatingtranscriptomicsdatawithinflammatorymarkerstounderstandtumourmicroenvironmentinhepatocellularcarcinoma