Re-visiting the COVID-19 analysis using the class of high ordered integer-valued time series models with harmonic features

The COVID-19 series is obviously one of the most volatile time series with lots of spikes and oscillations. The conventional integer-valued auto-regressive time series models (INAR) may be limited to account for such features in COVID-19 series such as severe over-dispersion, excess of zeros, period...

Full description

Bibliographic Details
Main Authors: Naushad Mamode Khan, Ashwinee Devi Soobhug, Noha Youssef, Swalay Fedally, Saralees Nadarajah, Zaid Heetun
Format: Article
Language:English
Published: Elsevier 2022-11-01
Series:Healthcare Analytics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2772442522000363
Description
Summary:The COVID-19 series is obviously one of the most volatile time series with lots of spikes and oscillations. The conventional integer-valued auto-regressive time series models (INAR) may be limited to account for such features in COVID-19 series such as severe over-dispersion, excess of zeros, periodicity, harmonic shapes and oscillations. This paper proposes alternative formulations of the classical INAR process by considering the class of high-ordered INAR models with harmonic innovation distributions. Interestingly, the paper further explores the bivariate extension of these high-ordered INARs. South Africa and Mauritius’ COVID-19 series are re-scrutinized under the optic of these new INAR processes. Some simulation experiments are also executed to validate the new models and their estimation procedures.
ISSN:2772-4425