Genome Mining for Antimicrobial Compounds in Wild Marine Animals-Associated Enterococci

New ecosystems are being actively mined for new bioactive compounds. Because of the large amount of unexplored biodiversity, bacteria from marine environments are especially promising. Further, host-associated microbes are of special interest because of their low toxicity and compatibility with host...

Full description

Bibliographic Details
Main Authors: Janira Prichula, Muriel Primon-Barros, Romeu C. Z. Luz, Ícaro M. S. Castro, Thiago G. S. Paim, Maurício Tavares, Rodrigo Ligabue-Braun, Pedro A. d’Azevedo, Jeverson Frazzon, Ana P. G. Frazzon, Adriana Seixas, Michael S. Gilmore
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Marine Drugs
Subjects:
Online Access:https://www.mdpi.com/1660-3397/19/6/328
Description
Summary:New ecosystems are being actively mined for new bioactive compounds. Because of the large amount of unexplored biodiversity, bacteria from marine environments are especially promising. Further, host-associated microbes are of special interest because of their low toxicity and compatibility with host health. Here, we identified and characterized biosynthetic gene clusters encoding antimicrobial compounds in host-associated enterococci recovered from fecal samples of wild marine animals remote from human-affected ecosystems. Putative biosynthetic gene clusters in the genomes of 22 <i>Enterococcus</i> strains of marine origin were predicted using antiSMASH5 and Bagel4 bioinformatic software. At least one gene cluster encoding a putative bioactive compound precursor was identified in each genome. Collectively, 73 putative antimicrobial compounds were identified, including 61 bacteriocins (83.56%), 10 terpenes (13.70%), and 2 (2.74%) related to putative nonribosomal peptides (NRPs). Two of the species studied, <i>Enterococcus avium</i> and <i>Enterococcus mundtti</i>, are rare causes of human disease and were found to lack any known pathogenic determinants but yet possessed bacteriocin biosynthetic genes, suggesting possible additional utility as probiotics. Wild marine animal-associated enterococci from human-remote ecosystems provide a potentially rich source for new antimicrobial compounds of therapeutic and industrial value and potential probiotic application.
ISSN:1660-3397