Estimation of missing data of monthly rainfall in southwestern Colombia using artificial neural networks

The success of many projects linked to the management and planning of water resources depends mainly on the quality of the climatic and hydrological data that is provided. Nevertheless, the missing data are frequently found in hydroclimatic variables due to measuring instrument failures, observation...

Full description

Bibliographic Details
Main Authors: Teresita Canchala-Nastar, Yesid Carvajal-Escobar, Wilfredo Alfonso-Morales, Wilmar Loaiza Cerón, Eduardo Caicedo
Format: Article
Language:English
Published: Elsevier 2019-10-01
Series:Data in Brief
Online Access:http://www.sciencedirect.com/science/article/pii/S2352340919308728
_version_ 1819067137898053632
author Teresita Canchala-Nastar
Yesid Carvajal-Escobar
Wilfredo Alfonso-Morales
Wilmar Loaiza Cerón
Eduardo Caicedo
author_facet Teresita Canchala-Nastar
Yesid Carvajal-Escobar
Wilfredo Alfonso-Morales
Wilmar Loaiza Cerón
Eduardo Caicedo
author_sort Teresita Canchala-Nastar
collection DOAJ
description The success of many projects linked to the management and planning of water resources depends mainly on the quality of the climatic and hydrological data that is provided. Nevertheless, the missing data are frequently found in hydroclimatic variables due to measuring instrument failures, observation recording errors, meteorological extremes, and the challenges associated with accessing measurement areas. Hence, it is necessary to apply an appropriate fill of missing data before any analysis. This paper is intended to present the filling of missing data of monthly rainfall of 45 gauge stations located in southwestern Colombia. The series analyzed covers 34 years of observations between 1983 and 2016, available from the Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). The estimation of missing data was done using Non-linear Principal Component Analysis (NLPCA); a non-linear generalization of the standard Principal Component Analysis Method via an Artificial Neural Networks (ANN) approach. The best result was obtained using a network with a [45−44−45] architecture. The estimated mean squared error in the imputation of missing data was approximately 9.8 mm. month−1, showing that the NLPCA approach constitutes a powerful methodology in the imputation of missing rainfall data. The estimated rainfall dataset helps reduce uncertainty for further studies related to homogeneity analyses, conglomerates, trends, multivariate statistics and meteorological forecasts in regions with information deficits such as southwestern Colombia. Keywords: Missing data, Monthly Rainfall Data, Artificial neural networks, NLPCA
first_indexed 2024-12-21T16:13:29Z
format Article
id doaj.art-d4737e5debfc47129b4c0e7246257709
institution Directory Open Access Journal
issn 2352-3409
language English
last_indexed 2024-12-21T16:13:29Z
publishDate 2019-10-01
publisher Elsevier
record_format Article
series Data in Brief
spelling doaj.art-d4737e5debfc47129b4c0e72462577092022-12-21T18:57:45ZengElsevierData in Brief2352-34092019-10-0126Estimation of missing data of monthly rainfall in southwestern Colombia using artificial neural networksTeresita Canchala-Nastar0Yesid Carvajal-Escobar1Wilfredo Alfonso-Morales2Wilmar Loaiza Cerón3Eduardo Caicedo4Grupo de Investigación en Ingeniería de Recursos Hídricos y Suelos (IREHISA), Escuela de Recursos Naturales y del Ambiente (EIDENAR), Facultad de Ingeniería, Universidad del Valle, Calle 13 # 100-00, Cali, Colombia; Corresponding author.Grupo de Investigación en Ingeniería de Recursos Hídricos y Suelos (IREHISA), Escuela de Recursos Naturales y del Ambiente (EIDENAR), Facultad de Ingeniería, Universidad del Valle, Calle 13 # 100-00, Cali, ColombiaGrupo de Percepción y Sistemas Inteligentes (PSI), Escuela de Ingeniería Eléctrica y Electrónica, Facultad de Ingeniería, Universidad del Valle, Calle 13 # 100-00, Cali, ColombiaDepartamento de Geografía, Facultad de Humanidades, Universidad del Valle, Calle 13 # 100-00, Cali, ColombiaGrupo de Percepción y Sistemas Inteligentes (PSI), Escuela de Ingeniería Eléctrica y Electrónica, Facultad de Ingeniería, Universidad del Valle, Calle 13 # 100-00, Cali, ColombiaThe success of many projects linked to the management and planning of water resources depends mainly on the quality of the climatic and hydrological data that is provided. Nevertheless, the missing data are frequently found in hydroclimatic variables due to measuring instrument failures, observation recording errors, meteorological extremes, and the challenges associated with accessing measurement areas. Hence, it is necessary to apply an appropriate fill of missing data before any analysis. This paper is intended to present the filling of missing data of monthly rainfall of 45 gauge stations located in southwestern Colombia. The series analyzed covers 34 years of observations between 1983 and 2016, available from the Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). The estimation of missing data was done using Non-linear Principal Component Analysis (NLPCA); a non-linear generalization of the standard Principal Component Analysis Method via an Artificial Neural Networks (ANN) approach. The best result was obtained using a network with a [45−44−45] architecture. The estimated mean squared error in the imputation of missing data was approximately 9.8 mm. month−1, showing that the NLPCA approach constitutes a powerful methodology in the imputation of missing rainfall data. The estimated rainfall dataset helps reduce uncertainty for further studies related to homogeneity analyses, conglomerates, trends, multivariate statistics and meteorological forecasts in regions with information deficits such as southwestern Colombia. Keywords: Missing data, Monthly Rainfall Data, Artificial neural networks, NLPCAhttp://www.sciencedirect.com/science/article/pii/S2352340919308728
spellingShingle Teresita Canchala-Nastar
Yesid Carvajal-Escobar
Wilfredo Alfonso-Morales
Wilmar Loaiza Cerón
Eduardo Caicedo
Estimation of missing data of monthly rainfall in southwestern Colombia using artificial neural networks
Data in Brief
title Estimation of missing data of monthly rainfall in southwestern Colombia using artificial neural networks
title_full Estimation of missing data of monthly rainfall in southwestern Colombia using artificial neural networks
title_fullStr Estimation of missing data of monthly rainfall in southwestern Colombia using artificial neural networks
title_full_unstemmed Estimation of missing data of monthly rainfall in southwestern Colombia using artificial neural networks
title_short Estimation of missing data of monthly rainfall in southwestern Colombia using artificial neural networks
title_sort estimation of missing data of monthly rainfall in southwestern colombia using artificial neural networks
url http://www.sciencedirect.com/science/article/pii/S2352340919308728
work_keys_str_mv AT teresitacanchalanastar estimationofmissingdataofmonthlyrainfallinsouthwesterncolombiausingartificialneuralnetworks
AT yesidcarvajalescobar estimationofmissingdataofmonthlyrainfallinsouthwesterncolombiausingartificialneuralnetworks
AT wilfredoalfonsomorales estimationofmissingdataofmonthlyrainfallinsouthwesterncolombiausingartificialneuralnetworks
AT wilmarloaizaceron estimationofmissingdataofmonthlyrainfallinsouthwesterncolombiausingartificialneuralnetworks
AT eduardocaicedo estimationofmissingdataofmonthlyrainfallinsouthwesterncolombiausingartificialneuralnetworks