Oscillators Near Hopf Bifurcation

In this paper the differential transformation method (DTM) is employed to solve a system of linear differential equations derived for energy optimal control theory and nonlinear differential equations and their systems for oscillators near Hopf bifurcation. They are given by differential equations i...

Full description

Bibliographic Details
Main Authors: Helena Samajova, Tongxing Li
Format: Article
Language:English
Published: University of Žilina 2015-08-01
Series:Communications
Subjects:
Online Access:https://komunikacie.uniza.sk/artkey/csl-201503-0014_oscillators-near-hopf-bifurcation.php
_version_ 1797846924118720512
author Helena Samajova
Tongxing Li
author_facet Helena Samajova
Tongxing Li
author_sort Helena Samajova
collection DOAJ
description In this paper the differential transformation method (DTM) is employed to solve a system of linear differential equations derived for energy optimal control theory and nonlinear differential equations and their systems for oscillators near Hopf bifurcation. They are given by differential equations in a complex plane. Different types of forced terms are considered. The approximate solutions are given in the form of series with required accuracy. Some numerical examples are provided.
first_indexed 2024-04-09T18:03:54Z
format Article
id doaj.art-d47cd0b338484cedaf9c93a4f8cb6d23
institution Directory Open Access Journal
issn 1335-4205
2585-7878
language English
last_indexed 2024-04-09T18:03:54Z
publishDate 2015-08-01
publisher University of Žilina
record_format Article
series Communications
spelling doaj.art-d47cd0b338484cedaf9c93a4f8cb6d232023-04-14T06:31:00ZengUniversity of ŽilinaCommunications1335-42052585-78782015-08-01173838710.26552/com.C.2015.3.83-87csl-201503-0014Oscillators Near Hopf BifurcationHelena Samajova0Tongxing Li1Department of Appl. Mathematics, Faculty of Mechanical Engineering, University of Zilina, SlovakiaSchool of Control Science and Engineering, Shandong University, Jinan, ChinaIn this paper the differential transformation method (DTM) is employed to solve a system of linear differential equations derived for energy optimal control theory and nonlinear differential equations and their systems for oscillators near Hopf bifurcation. They are given by differential equations in a complex plane. Different types of forced terms are considered. The approximate solutions are given in the form of series with required accuracy. Some numerical examples are provided.https://komunikacie.uniza.sk/artkey/csl-201503-0014_oscillators-near-hopf-bifurcation.phposcillatorssystems of ordinary differential equationsdifferential transformation method
spellingShingle Helena Samajova
Tongxing Li
Oscillators Near Hopf Bifurcation
Communications
oscillators
systems of ordinary differential equations
differential transformation method
title Oscillators Near Hopf Bifurcation
title_full Oscillators Near Hopf Bifurcation
title_fullStr Oscillators Near Hopf Bifurcation
title_full_unstemmed Oscillators Near Hopf Bifurcation
title_short Oscillators Near Hopf Bifurcation
title_sort oscillators near hopf bifurcation
topic oscillators
systems of ordinary differential equations
differential transformation method
url https://komunikacie.uniza.sk/artkey/csl-201503-0014_oscillators-near-hopf-bifurcation.php
work_keys_str_mv AT helenasamajova oscillatorsnearhopfbifurcation
AT tongxingli oscillatorsnearhopfbifurcation