Summary: | This article proposes a discrete proportional-integral-derivative (PID) load frequency control (LFC) scheme to investigate the dissipative analysis issue of restructured wind power systems via a non-fragile design approach. Firstly, by taking the different power-sharing rates of governors into full consideration, a unified model is constructed for interconnected power systems containing multiple governors. Secondly, unlike existing LFC schemes, a non-fragile discrete PID control scheme is designed, which has the performance of tolerating control gain fluctuation and relieving the huge computational burden. Further, by constructing a discrete-type Lyapunov–Krasovskii functional, improved stability criteria with a strict dissipative performance index are established. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed control method.
|