Dynamic Optical Wireless Power Transfer for Electric Vehicles

This research proposes and analyzes a dynamic optical wireless power transfer (OWPT) system for wireless charging of aerial and ground electric vehicles (EVs). In this system, an overhead facility is proposed to locate laser transmitters, renewable energy resources, and energy storage devices. There...

Full description

Bibliographic Details
Main Author: Dinh Hoa Nguyen
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10007816/
Description
Summary:This research proposes and analyzes a dynamic optical wireless power transfer (OWPT) system for wireless charging of aerial and ground electric vehicles (EVs). In this system, an overhead facility is proposed to locate laser transmitters, renewable energy resources, and energy storage devices. There are laser transmitters on the facility’s roof pointing upward to wirelessly charge aerial EVs, while the other laser transmitters on the facility’s ceiling pointing downward to wirelessly charge ground EVs. All laser transmitters are able to rotate around the normal direction to track and continuously charge aerial and ground EVs while they are moving, due to the equipped tracking cameras. Analytical mathematical formulas are then derived for the wirelessly transmitted power and energy. Based on those formulas, the unique existence of maximum power and energy points are proved. Furthermore, those maximum points are shown to be inversely linearly dependent on the environment attenuation coefficient, i.e. on weather conditions. Numerical simulations are carried out to validate and illustrate the obtained theoretical results. Finally, implications of those results on the design of ground EVs are introduced, based on which a comparison with another wireless power transfer technology reveals that the proposed dynamic OWPT system is more effective.
ISSN:2169-3536