Mapping Bubble Formation and Coalescence in a Tubular Cross-Flow Membrane Foaming System

Membrane foaming is a promising alternative to conventional foaming methods to produce uniform bubbles. In this study, we provide a fundamental study of a cross-flow membrane foaming (CFMF) system to understand and control bubble formation for various process conditions and fluid properties. Observa...

Full description

Bibliographic Details
Main Authors: Boxin Deng, Tessa Neef, Karin Schroën, Jolet de Ruiter
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Membranes
Subjects:
Online Access:https://www.mdpi.com/2077-0375/11/9/710
_version_ 1797518263611031552
author Boxin Deng
Tessa Neef
Karin Schroën
Jolet de Ruiter
author_facet Boxin Deng
Tessa Neef
Karin Schroën
Jolet de Ruiter
author_sort Boxin Deng
collection DOAJ
description Membrane foaming is a promising alternative to conventional foaming methods to produce uniform bubbles. In this study, we provide a fundamental study of a cross-flow membrane foaming (CFMF) system to understand and control bubble formation for various process conditions and fluid properties. Observations with high spatial and temporal resolution allowed us to study bubble formation and bubble coalescence processes simultaneously. Bubble formation time and the snap-off bubble size (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>) were primarily controlled by the continuous phase flow rate (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Q</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula>); they decreased as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Q</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula> increased, from 1.64 to 0.13 ms and from 125 to 49 µm. Coalescence resulted in an increase in bubble size (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mrow><mi>c</mi><mi>o</mi><mi>a</mi><mi>l</mi></mrow></msub><mo>></mo><msub><mi>D</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>), which can be strongly reduced by increasing either continuous phase viscosity or protein concentration—factors that only slightly influence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>. Particularly, in a 2.5 wt % whey protein system, coalescence could be suppressed with a coefficient of variation below 20%. The stabilizing effect is ascribed to the convective transport of proteins and the intersection of timescales (i.e., μs to ms) of bubble formation and protein adsorption. Our study provides insights into the membrane foaming process at relevant (micro-) length and time scales and paves the way for its further development and application.
first_indexed 2024-03-10T07:27:26Z
format Article
id doaj.art-d4b0d3292ce24c8dbd19781379f7a9f0
institution Directory Open Access Journal
issn 2077-0375
language English
last_indexed 2024-03-10T07:27:26Z
publishDate 2021-09-01
publisher MDPI AG
record_format Article
series Membranes
spelling doaj.art-d4b0d3292ce24c8dbd19781379f7a9f02023-11-22T14:10:46ZengMDPI AGMembranes2077-03752021-09-0111971010.3390/membranes11090710Mapping Bubble Formation and Coalescence in a Tubular Cross-Flow Membrane Foaming SystemBoxin Deng0Tessa Neef1Karin Schroën2Jolet de Ruiter3Food Process Engineering Group, Department of Agrotechnology & Food Science, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The NetherlandsFood Process Engineering Group, Department of Agrotechnology & Food Science, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The NetherlandsFood Process Engineering Group, Department of Agrotechnology & Food Science, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The NetherlandsFood Process Engineering Group, Department of Agrotechnology & Food Science, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, The NetherlandsMembrane foaming is a promising alternative to conventional foaming methods to produce uniform bubbles. In this study, we provide a fundamental study of a cross-flow membrane foaming (CFMF) system to understand and control bubble formation for various process conditions and fluid properties. Observations with high spatial and temporal resolution allowed us to study bubble formation and bubble coalescence processes simultaneously. Bubble formation time and the snap-off bubble size (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>) were primarily controlled by the continuous phase flow rate (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Q</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula>); they decreased as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>Q</mi><mi>c</mi></msub></mrow></semantics></math></inline-formula> increased, from 1.64 to 0.13 ms and from 125 to 49 µm. Coalescence resulted in an increase in bubble size (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mrow><mi>c</mi><mi>o</mi><mi>a</mi><mi>l</mi></mrow></msub><mo>></mo><msub><mi>D</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>), which can be strongly reduced by increasing either continuous phase viscosity or protein concentration—factors that only slightly influence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>D</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula>. Particularly, in a 2.5 wt % whey protein system, coalescence could be suppressed with a coefficient of variation below 20%. The stabilizing effect is ascribed to the convective transport of proteins and the intersection of timescales (i.e., μs to ms) of bubble formation and protein adsorption. Our study provides insights into the membrane foaming process at relevant (micro-) length and time scales and paves the way for its further development and application.https://www.mdpi.com/2077-0375/11/9/710cross-flow membrane foaming (CFMF)whey protein(sub)millisecondbubble formationbubble coalescenceconvective transport
spellingShingle Boxin Deng
Tessa Neef
Karin Schroën
Jolet de Ruiter
Mapping Bubble Formation and Coalescence in a Tubular Cross-Flow Membrane Foaming System
Membranes
cross-flow membrane foaming (CFMF)
whey protein
(sub)millisecond
bubble formation
bubble coalescence
convective transport
title Mapping Bubble Formation and Coalescence in a Tubular Cross-Flow Membrane Foaming System
title_full Mapping Bubble Formation and Coalescence in a Tubular Cross-Flow Membrane Foaming System
title_fullStr Mapping Bubble Formation and Coalescence in a Tubular Cross-Flow Membrane Foaming System
title_full_unstemmed Mapping Bubble Formation and Coalescence in a Tubular Cross-Flow Membrane Foaming System
title_short Mapping Bubble Formation and Coalescence in a Tubular Cross-Flow Membrane Foaming System
title_sort mapping bubble formation and coalescence in a tubular cross flow membrane foaming system
topic cross-flow membrane foaming (CFMF)
whey protein
(sub)millisecond
bubble formation
bubble coalescence
convective transport
url https://www.mdpi.com/2077-0375/11/9/710
work_keys_str_mv AT boxindeng mappingbubbleformationandcoalescenceinatubularcrossflowmembranefoamingsystem
AT tessaneef mappingbubbleformationandcoalescenceinatubularcrossflowmembranefoamingsystem
AT karinschroen mappingbubbleformationandcoalescenceinatubularcrossflowmembranefoamingsystem
AT joletderuiter mappingbubbleformationandcoalescenceinatubularcrossflowmembranefoamingsystem