Influence of Vibration Dampers on the Vortex-Induced Force and Flow Characteristic of Deep-Water Jacket Pipe

Vibration dampers are widely used in power transmission line vibration reduction. In order to use them for wind-induced vortex-induced vibration (VIV) suppression of jacket pipes, the effect of the vibration dampers on the vortex-induced force is studied using the computational fluid dynamics (CFD)...

Full description

Bibliographic Details
Main Authors: Chao Luo, Zhirong Wei, Jiajia Chen, Liqin Liu, Yongjun Yu
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/20/10219
Description
Summary:Vibration dampers are widely used in power transmission line vibration reduction. In order to use them for wind-induced vortex-induced vibration (VIV) suppression of jacket pipes, the effect of the vibration dampers on the vortex-induced force is studied using the computational fluid dynamics (CFD) method. The range of Reynolds numbers in simulations is in the critical interval, and the Reynolds-averaged Navier–Stokes (RANS) equations and shear stress transport (SST) <i>k-ω</i> turbulence model are used to calculate the pipe with vibration dampers. The lift coefficient of the pipe is reduced by about 65% after the vibration dampers are installed. The effect of vibration dampers on the lift force and drag force is little affected by the change of wind speed. The same number of vibration dampers are installed in two rows, and the vortex shedding frequency is reduced by about 16% compared with that for one row. The vibration dampers destroy the wake vortex of the high-velocity areas around the pipe, thereby reducing the pipe’s lift coefficient and the vortex-induced force. The vibration dampers have no obvious influence on the vortex far from the pipe.
ISSN:2076-3417