Summary: | In radiography, an antiscatter grid is a well-known device for eliminating unexpected x-ray scatter. We investigate a new stationary grid artifact suppression method based on a nonsubsampled contourlet transform (NSCT) incorporated with Gaussian band-pass filtering. The proposed method has an advantage that extracts the Moiré components while minimizing the loss of image information and apply the prior information of Moiré component positions in multi-decomposition sub-band images. We implemented the proposed algorithm and performed a simulation and an experiment to demonstrate its viability. We did this experiment using an x-ray tube (M-113T, Varian, focal spot size: 0.1 mm), a flat-panel detector (ROSE-M Sensor, Aspenstate, pixel dimension: 3032 × 3800 pixels, pixel size: 0.076 mm), and carbon graphite-interspaced grids (JPI Healthcare, 18 cm × 24 cm, line density: 103 LP/inch and 150 LP/inch, ratio: 5:1, focal distance: 65 cm). Our results indicate that the proposed method successfully suppressed grid artifacts by reducing them without either reducing the spatial resolution or causing negative side effects. Consequently, we anticipate that the proposed method can improve image acquisition in a stationary grid x-ray system as well as in extended x-ray imaging.
|