Quantum chemical accuracy from density functional approximations via machine learning

High-level ab initio quantum chemical methods carry a high computational burden, thus limiting their applicability. Here, the authors employ machine learning to generate coupled-cluster energies and forces at chemical accuracy for geometry optimization and molecular dynamics from DFT densities.

Bibliographic Details
Main Authors: Mihail Bogojeski, Leslie Vogt-Maranto, Mark E. Tuckerman, Klaus-Robert Müller, Kieron Burke
Format: Article
Language:English
Published: Nature Portfolio 2020-10-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-020-19093-1
_version_ 1818743676321398784
author Mihail Bogojeski
Leslie Vogt-Maranto
Mark E. Tuckerman
Klaus-Robert Müller
Kieron Burke
author_facet Mihail Bogojeski
Leslie Vogt-Maranto
Mark E. Tuckerman
Klaus-Robert Müller
Kieron Burke
author_sort Mihail Bogojeski
collection DOAJ
description High-level ab initio quantum chemical methods carry a high computational burden, thus limiting their applicability. Here, the authors employ machine learning to generate coupled-cluster energies and forces at chemical accuracy for geometry optimization and molecular dynamics from DFT densities.
first_indexed 2024-12-18T02:32:12Z
format Article
id doaj.art-d4bccd11d88747148712df68cb7f00dc
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-12-18T02:32:12Z
publishDate 2020-10-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-d4bccd11d88747148712df68cb7f00dc2022-12-21T21:23:52ZengNature PortfolioNature Communications2041-17232020-10-0111111110.1038/s41467-020-19093-1Quantum chemical accuracy from density functional approximations via machine learningMihail Bogojeski0Leslie Vogt-Maranto1Mark E. Tuckerman2Klaus-Robert Müller3Kieron Burke4Machine Learning Group, Technische Universität BerlinDepartment of Chemistry, New York UniversityDepartment of Chemistry, New York UniversityMachine Learning Group, Technische Universität BerlinDepartment of Physics and Astronomy, University of CaliforniaHigh-level ab initio quantum chemical methods carry a high computational burden, thus limiting their applicability. Here, the authors employ machine learning to generate coupled-cluster energies and forces at chemical accuracy for geometry optimization and molecular dynamics from DFT densities.https://doi.org/10.1038/s41467-020-19093-1
spellingShingle Mihail Bogojeski
Leslie Vogt-Maranto
Mark E. Tuckerman
Klaus-Robert Müller
Kieron Burke
Quantum chemical accuracy from density functional approximations via machine learning
Nature Communications
title Quantum chemical accuracy from density functional approximations via machine learning
title_full Quantum chemical accuracy from density functional approximations via machine learning
title_fullStr Quantum chemical accuracy from density functional approximations via machine learning
title_full_unstemmed Quantum chemical accuracy from density functional approximations via machine learning
title_short Quantum chemical accuracy from density functional approximations via machine learning
title_sort quantum chemical accuracy from density functional approximations via machine learning
url https://doi.org/10.1038/s41467-020-19093-1
work_keys_str_mv AT mihailbogojeski quantumchemicalaccuracyfromdensityfunctionalapproximationsviamachinelearning
AT leslievogtmaranto quantumchemicalaccuracyfromdensityfunctionalapproximationsviamachinelearning
AT marketuckerman quantumchemicalaccuracyfromdensityfunctionalapproximationsviamachinelearning
AT klausrobertmuller quantumchemicalaccuracyfromdensityfunctionalapproximationsviamachinelearning
AT kieronburke quantumchemicalaccuracyfromdensityfunctionalapproximationsviamachinelearning