Hospital financing of ischaemic stroke: determinants of funding and usefulness of DRG subcategories based on severity of illness

Abstract Background Several Western and Arab countries, as well as over 30 States in the US are using the “All-Patient Refined Diagnosis-Related Groups” (APR-DRGs) with four severity-of-illness (SOI) subcategories as a model for hospital funding. The aim of this study is to verify whether this is an...

Full description

Bibliographic Details
Main Authors: Sarah Dewilde, Lieven Annemans, Hilde Pincé, Vincent Thijs
Format: Article
Language:English
Published: BMC 2018-05-01
Series:BMC Health Services Research
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12913-018-3134-6
_version_ 1811213798810320896
author Sarah Dewilde
Lieven Annemans
Hilde Pincé
Vincent Thijs
author_facet Sarah Dewilde
Lieven Annemans
Hilde Pincé
Vincent Thijs
author_sort Sarah Dewilde
collection DOAJ
description Abstract Background Several Western and Arab countries, as well as over 30 States in the US are using the “All-Patient Refined Diagnosis-Related Groups” (APR-DRGs) with four severity-of-illness (SOI) subcategories as a model for hospital funding. The aim of this study is to verify whether this is an adequate model for funding stroke hospital admissions, and to explore which risk factors and complications may influence the amount of funding. Methods A bottom-up analysis of 2496 ischaemic stroke admissions in Belgium compares detailed in-hospital resource use (including length of stay, imaging, lab tests, visits and drugs) per SOI category and calculates total hospitalisation costs. A second analysis examines the relationship between the type and location of the index stroke, medical risk factors, patient characteristics, comorbidities and in-hospital complications on the one hand, and the funding level received by the hospital on the other hand. This dataset included 2513 hospitalisations reporting on 35,195 secondary diagnosis codes, all medically coded with the International Classification of Disease (ICD-9). Results Total costs per admission increased by SOI (€3710–€16,735), with severe patients costing proportionally more in bed days (86%), and milder patients costing more in medical imaging (24%). In all resource categories (bed days, medications, visits and imaging and laboratory tests), the absolute utilisation rate was higher among severe patients, but also showed more variability. SOI 1–2 was associated with vague, non-specific stroke-related ICD-9 codes as primary diagnosis (71–81% of hospitalisations). 24% hospitalisations had, in addition to the primary diagnosis, other stroke-related codes as secondary diagnoses. Presence of lung infections, intracranial bleeding, severe kidney disease, and do-not-resuscitate status were each associated with extreme SOI (p < 0.0001). Conclusions APR-DRG with SOI subclassification is a useful funding model as it clusters stroke patients in homogenous groups in terms of resource use. The data on medical care utilisation can be used with unit costs from other countries with similar healthcare set-ups to 1) assess stroke-related hospital funding versus actual costs; 2) inform economic models on stroke prevention and treatment. The data on diagnosis codes can be used to 3) understand which factors influence hospital funding; 4) raise awareness about medical coding practices.
first_indexed 2024-04-12T05:52:15Z
format Article
id doaj.art-d4bf00a76fc8497a81bf3aa313c7ec6e
institution Directory Open Access Journal
issn 1472-6963
language English
last_indexed 2024-04-12T05:52:15Z
publishDate 2018-05-01
publisher BMC
record_format Article
series BMC Health Services Research
spelling doaj.art-d4bf00a76fc8497a81bf3aa313c7ec6e2022-12-22T03:45:17ZengBMCBMC Health Services Research1472-69632018-05-0118111010.1186/s12913-018-3134-6Hospital financing of ischaemic stroke: determinants of funding and usefulness of DRG subcategories based on severity of illnessSarah Dewilde0Lieven Annemans1Hilde Pincé2Vincent Thijs3Department of Public Health, Faculty of Medicine, UGentServices in Health EconomicsUZ LeuvenDepartment of Neurology, Florey Institute of Neuroscience and Mental Health, University of Melbourne and Austin HealthAbstract Background Several Western and Arab countries, as well as over 30 States in the US are using the “All-Patient Refined Diagnosis-Related Groups” (APR-DRGs) with four severity-of-illness (SOI) subcategories as a model for hospital funding. The aim of this study is to verify whether this is an adequate model for funding stroke hospital admissions, and to explore which risk factors and complications may influence the amount of funding. Methods A bottom-up analysis of 2496 ischaemic stroke admissions in Belgium compares detailed in-hospital resource use (including length of stay, imaging, lab tests, visits and drugs) per SOI category and calculates total hospitalisation costs. A second analysis examines the relationship between the type and location of the index stroke, medical risk factors, patient characteristics, comorbidities and in-hospital complications on the one hand, and the funding level received by the hospital on the other hand. This dataset included 2513 hospitalisations reporting on 35,195 secondary diagnosis codes, all medically coded with the International Classification of Disease (ICD-9). Results Total costs per admission increased by SOI (€3710–€16,735), with severe patients costing proportionally more in bed days (86%), and milder patients costing more in medical imaging (24%). In all resource categories (bed days, medications, visits and imaging and laboratory tests), the absolute utilisation rate was higher among severe patients, but also showed more variability. SOI 1–2 was associated with vague, non-specific stroke-related ICD-9 codes as primary diagnosis (71–81% of hospitalisations). 24% hospitalisations had, in addition to the primary diagnosis, other stroke-related codes as secondary diagnoses. Presence of lung infections, intracranial bleeding, severe kidney disease, and do-not-resuscitate status were each associated with extreme SOI (p < 0.0001). Conclusions APR-DRG with SOI subclassification is a useful funding model as it clusters stroke patients in homogenous groups in terms of resource use. The data on medical care utilisation can be used with unit costs from other countries with similar healthcare set-ups to 1) assess stroke-related hospital funding versus actual costs; 2) inform economic models on stroke prevention and treatment. The data on diagnosis codes can be used to 3) understand which factors influence hospital funding; 4) raise awareness about medical coding practices.http://link.springer.com/article/10.1186/s12913-018-3134-6Ischaemic strokeCostsAPR-DRGSOIResource useFunding
spellingShingle Sarah Dewilde
Lieven Annemans
Hilde Pincé
Vincent Thijs
Hospital financing of ischaemic stroke: determinants of funding and usefulness of DRG subcategories based on severity of illness
BMC Health Services Research
Ischaemic stroke
Costs
APR-DRG
SOI
Resource use
Funding
title Hospital financing of ischaemic stroke: determinants of funding and usefulness of DRG subcategories based on severity of illness
title_full Hospital financing of ischaemic stroke: determinants of funding and usefulness of DRG subcategories based on severity of illness
title_fullStr Hospital financing of ischaemic stroke: determinants of funding and usefulness of DRG subcategories based on severity of illness
title_full_unstemmed Hospital financing of ischaemic stroke: determinants of funding and usefulness of DRG subcategories based on severity of illness
title_short Hospital financing of ischaemic stroke: determinants of funding and usefulness of DRG subcategories based on severity of illness
title_sort hospital financing of ischaemic stroke determinants of funding and usefulness of drg subcategories based on severity of illness
topic Ischaemic stroke
Costs
APR-DRG
SOI
Resource use
Funding
url http://link.springer.com/article/10.1186/s12913-018-3134-6
work_keys_str_mv AT sarahdewilde hospitalfinancingofischaemicstrokedeterminantsoffundingandusefulnessofdrgsubcategoriesbasedonseverityofillness
AT lievenannemans hospitalfinancingofischaemicstrokedeterminantsoffundingandusefulnessofdrgsubcategoriesbasedonseverityofillness
AT hildepince hospitalfinancingofischaemicstrokedeterminantsoffundingandusefulnessofdrgsubcategoriesbasedonseverityofillness
AT vincentthijs hospitalfinancingofischaemicstrokedeterminantsoffundingandusefulnessofdrgsubcategoriesbasedonseverityofillness