Prediction of Hydraulic Jumps on a Triangular Bed Roughness Using Numerical Modeling and Soft Computing Methods

This study investigates the characteristics of free and submerged hydraulic jumps on the triangular bed roughness in various <i>T</i>/<i>I</i> ratios (i.e., height and distance of roughness) using CFD modeling techniques. The accuracy of numerical modeling outcomes was checke...

Full description

Bibliographic Details
Main Authors: Mehdi Dasineh, Amir Ghaderi, Mohammad Bagherzadeh, Mohammad Ahmadi, Alban Kuriqi
Format: Article
Language:English
Published: MDPI AG 2021-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/23/3135
_version_ 1797507459694198784
author Mehdi Dasineh
Amir Ghaderi
Mohammad Bagherzadeh
Mohammad Ahmadi
Alban Kuriqi
author_facet Mehdi Dasineh
Amir Ghaderi
Mohammad Bagherzadeh
Mohammad Ahmadi
Alban Kuriqi
author_sort Mehdi Dasineh
collection DOAJ
description This study investigates the characteristics of free and submerged hydraulic jumps on the triangular bed roughness in various <i>T</i>/<i>I</i> ratios (i.e., height and distance of roughness) using CFD modeling techniques. The accuracy of numerical modeling outcomes was checked and compared using artificial intelligence methods, namely Support Vector Machines (SVM), Gene Expression Programming (GEP), and Random Forest (RF). The results of the FLOW-3D<sup>®</sup> model and experimental data showed that the overall mean value of relative error is 4.1%, which confirms the numerical model’s ability to predict the characteristics of the free and submerged jumps. The SVM model with a minimum of Root Mean Square Error (RMSE) and a maximum of correlation coefficient (<i>R</i><sup>2</sup>), compared with GEP and RF models in the training and testing phases for predicting the sequent depth ratio (<i>y</i><sub>2</sub>/<i>y</i><sub>1</sub>), submerged depth ratio (<i>y</i><sub>3</sub>/<i>y</i><sub>1</sub>), tailwater depth ratio (<i>y</i><sub>4</sub>/<i>y</i><sub>1</sub>), length ratio of jumps (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>L</mi><mi>j</mi></msub><mo>/</mo><msubsup><mi>y</mi><mn>2</mn><mo>*</mo></msubsup></mrow></semantics></math></inline-formula>) and energy dissipation (Δ<i>E</i>/<i>E</i><sub>1</sub>), was recognized as the best model. Moreover, the best result for predicting the length ratio of free jumps <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>L</mi><mrow><mi>j</mi><mi>f</mi><mo>/</mo></mrow></msub><msubsup><mi>y</mi><mn>2</mn><mo>*</mo></msubsup></mrow></semantics></math></inline-formula>) in the optimal gamma is <i>γ</i> = 10 and the length ratio of submerged jumps <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>L</mi><mrow><mi>j</mi><mi>s</mi><mo>/</mo></mrow></msub><msubsup><mi>y</mi><mn>2</mn><mo>*</mo></msubsup></mrow></semantics></math></inline-formula>) is γ = 0.60. Based on sensitivity analysis, the <i>Froude number</i> has the greatest effect on predicting the (<i>y</i><sub>3</sub>/<i>y</i><sub>1</sub>) compared with submergence factors (<i>SF</i>) and <i>T</i>/<i>I</i>. By omitting this parameter, the prediction accuracy is significantly reduced. Finally, the relationships with good correlation coefficients for the mentioned parameters in free and submerged jumps were presented based on numerical results.
first_indexed 2024-03-10T04:48:48Z
format Article
id doaj.art-d4c4269b8f5843a0b43d2ef2a8fa4433
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T04:48:48Z
publishDate 2021-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-d4c4269b8f5843a0b43d2ef2a8fa44332023-11-23T02:46:34ZengMDPI AGMathematics2227-73902021-12-01923313510.3390/math9233135Prediction of Hydraulic Jumps on a Triangular Bed Roughness Using Numerical Modeling and Soft Computing MethodsMehdi Dasineh0Amir Ghaderi1Mohammad Bagherzadeh2Mohammad Ahmadi3Alban Kuriqi4Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Maragheh 8311155181, IranDepartment of Civil Engineering, Faculty of Engineering, University of Zanjan, Zanjan 537138791, IranDepartment of Civil Engineering, Faculty of Engineering, Urmia University, Urmia 5756151818, IranDepartment of Civil Engineering, Faculty of Engineering, Shabestar Branch, Islamic Azad University, Shabestar 1584743311, IranCERIS, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, PortugalThis study investigates the characteristics of free and submerged hydraulic jumps on the triangular bed roughness in various <i>T</i>/<i>I</i> ratios (i.e., height and distance of roughness) using CFD modeling techniques. The accuracy of numerical modeling outcomes was checked and compared using artificial intelligence methods, namely Support Vector Machines (SVM), Gene Expression Programming (GEP), and Random Forest (RF). The results of the FLOW-3D<sup>®</sup> model and experimental data showed that the overall mean value of relative error is 4.1%, which confirms the numerical model’s ability to predict the characteristics of the free and submerged jumps. The SVM model with a minimum of Root Mean Square Error (RMSE) and a maximum of correlation coefficient (<i>R</i><sup>2</sup>), compared with GEP and RF models in the training and testing phases for predicting the sequent depth ratio (<i>y</i><sub>2</sub>/<i>y</i><sub>1</sub>), submerged depth ratio (<i>y</i><sub>3</sub>/<i>y</i><sub>1</sub>), tailwater depth ratio (<i>y</i><sub>4</sub>/<i>y</i><sub>1</sub>), length ratio of jumps (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>L</mi><mi>j</mi></msub><mo>/</mo><msubsup><mi>y</mi><mn>2</mn><mo>*</mo></msubsup></mrow></semantics></math></inline-formula>) and energy dissipation (Δ<i>E</i>/<i>E</i><sub>1</sub>), was recognized as the best model. Moreover, the best result for predicting the length ratio of free jumps <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>L</mi><mrow><mi>j</mi><mi>f</mi><mo>/</mo></mrow></msub><msubsup><mi>y</mi><mn>2</mn><mo>*</mo></msubsup></mrow></semantics></math></inline-formula>) in the optimal gamma is <i>γ</i> = 10 and the length ratio of submerged jumps <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>L</mi><mrow><mi>j</mi><mi>s</mi><mo>/</mo></mrow></msub><msubsup><mi>y</mi><mn>2</mn><mo>*</mo></msubsup></mrow></semantics></math></inline-formula>) is γ = 0.60. Based on sensitivity analysis, the <i>Froude number</i> has the greatest effect on predicting the (<i>y</i><sub>3</sub>/<i>y</i><sub>1</sub>) compared with submergence factors (<i>SF</i>) and <i>T</i>/<i>I</i>. By omitting this parameter, the prediction accuracy is significantly reduced. Finally, the relationships with good correlation coefficients for the mentioned parameters in free and submerged jumps were presented based on numerical results.https://www.mdpi.com/2227-7390/9/23/3135artificial intelligenceenergy dissipationFLOW-3Dhydraulic jumpsbed roughnesssensitivity analysis
spellingShingle Mehdi Dasineh
Amir Ghaderi
Mohammad Bagherzadeh
Mohammad Ahmadi
Alban Kuriqi
Prediction of Hydraulic Jumps on a Triangular Bed Roughness Using Numerical Modeling and Soft Computing Methods
Mathematics
artificial intelligence
energy dissipation
FLOW-3D
hydraulic jumps
bed roughness
sensitivity analysis
title Prediction of Hydraulic Jumps on a Triangular Bed Roughness Using Numerical Modeling and Soft Computing Methods
title_full Prediction of Hydraulic Jumps on a Triangular Bed Roughness Using Numerical Modeling and Soft Computing Methods
title_fullStr Prediction of Hydraulic Jumps on a Triangular Bed Roughness Using Numerical Modeling and Soft Computing Methods
title_full_unstemmed Prediction of Hydraulic Jumps on a Triangular Bed Roughness Using Numerical Modeling and Soft Computing Methods
title_short Prediction of Hydraulic Jumps on a Triangular Bed Roughness Using Numerical Modeling and Soft Computing Methods
title_sort prediction of hydraulic jumps on a triangular bed roughness using numerical modeling and soft computing methods
topic artificial intelligence
energy dissipation
FLOW-3D
hydraulic jumps
bed roughness
sensitivity analysis
url https://www.mdpi.com/2227-7390/9/23/3135
work_keys_str_mv AT mehdidasineh predictionofhydraulicjumpsonatriangularbedroughnessusingnumericalmodelingandsoftcomputingmethods
AT amirghaderi predictionofhydraulicjumpsonatriangularbedroughnessusingnumericalmodelingandsoftcomputingmethods
AT mohammadbagherzadeh predictionofhydraulicjumpsonatriangularbedroughnessusingnumericalmodelingandsoftcomputingmethods
AT mohammadahmadi predictionofhydraulicjumpsonatriangularbedroughnessusingnumericalmodelingandsoftcomputingmethods
AT albankuriqi predictionofhydraulicjumpsonatriangularbedroughnessusingnumericalmodelingandsoftcomputingmethods