Memory cost of temporal correlations

A possible notion of nonclassicality for single systems can be defined on the basis of the notion of memory cost of classically simulating probabilities observed in a temporal sequence of measurements. We further explore this idea in a theory-independent framework, namely, from the perspective of ge...

Full description

Bibliographic Details
Main Authors: Costantino Budroni, Gabriel Fagundes, Matthias Kleinmann
Format: Article
Language:English
Published: IOP Publishing 2019-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/ab3cb4
Description
Summary:A possible notion of nonclassicality for single systems can be defined on the basis of the notion of memory cost of classically simulating probabilities observed in a temporal sequence of measurements. We further explore this idea in a theory-independent framework, namely, from the perspective of general probability theories (GPTs), which includes classical and quantum theory as special examples. Under the assumption that each system has a finite memory capacity, identified with the maximal number of states perfectly distinguishable with a single measurement, we investigate what are the temporal correlations achievable with different theories, namely, classical, quantum, and GPTs beyond quantum mechanics. Already for the simplest nontrivial scenario, we derive inequalities able to distinguish temporal correlations where the underlying system is classical, quantum, or more general.
ISSN:1367-2630