Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations
Microwave radiometry has provided valuable spaceborne observations of Earth's geophysical properties for decades. The recent SMOS, Aquarius, and SMAP satellites have demonstrated the value of measurements at 1400 MHz for observing surface soil moisture, sea surface salinity, sea ice thick...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9404821/ |
_version_ | 1818438426863599616 |
---|---|
author | Joel T. Johnson Kenneth C. Jezek Giovanni Macelloni Marco Brogioni Leung Tsang Emmanuel P. Dinnat Jeffrey P. Walker Nan Ye Sidharth Misra Jeffrey R. Piepmeier Rajat Bindlish David M. LeVine Peggy E. OaNeill Lars Kaleschke Mark J. Andrews Caglar Yardim Mustafa Aksoy Michael Durand Chi-Chih Chen Oguz Demir Alexandra Bringer Julie Z. Miller Shannon T. Brown Ron Kwok Tong Lee Yann Kerr Dara Entekhabi Jinzheng Peng Andreas Colliander Steven Chan Joseph A. MacGregor Brooke Medley Roger DeRoo Mark Drinkwater |
author_facet | Joel T. Johnson Kenneth C. Jezek Giovanni Macelloni Marco Brogioni Leung Tsang Emmanuel P. Dinnat Jeffrey P. Walker Nan Ye Sidharth Misra Jeffrey R. Piepmeier Rajat Bindlish David M. LeVine Peggy E. OaNeill Lars Kaleschke Mark J. Andrews Caglar Yardim Mustafa Aksoy Michael Durand Chi-Chih Chen Oguz Demir Alexandra Bringer Julie Z. Miller Shannon T. Brown Ron Kwok Tong Lee Yann Kerr Dara Entekhabi Jinzheng Peng Andreas Colliander Steven Chan Joseph A. MacGregor Brooke Medley Roger DeRoo Mark Drinkwater |
author_sort | Joel T. Johnson |
collection | DOAJ |
description | Microwave radiometry has provided valuable spaceborne observations of Earth's geophysical properties for decades. The recent SMOS, Aquarius, and SMAP satellites have demonstrated the value of measurements at 1400 MHz for observing surface soil moisture, sea surface salinity, sea ice thickness, soil freeze/thaw state, and other geophysical variables. However, the information obtained is limited by penetration through the subsurface at 1400 MHz and by a reduced sensitivity to surface salinity in cold or wind-roughened waters. Recent airborne experiments have shown the potential of brightness temperature measurements from 500–1400 MHz to address these limitations by enabling sensing of soil moisture and sea ice thickness to greater depths, sensing of temperature deep within ice sheets, improved sensing of sea salinity in cold waters, and enhanced sensitivity to soil moisture under vegetation canopies. However, the absence of significant spectrum reserved for passive microwave measurements in the 500–1400 MHz band requires both an opportunistic sensing strategy and systems for reducing the impact of radio-frequency interference. Here, we summarize the potential advantages and applications of 500–1400 MHz microwave radiometry for Earth observation and review recent experiments and demonstrations of these concepts. We also describe the remaining questions and challenges to be addressed in advancing to future spaceborne operation of this technology along with recommendations for future research activities. |
first_indexed | 2024-12-14T17:40:23Z |
format | Article |
id | doaj.art-d4cddc5f12944abcaee3b9c5d421f227 |
institution | Directory Open Access Journal |
issn | 2151-1535 |
language | English |
last_indexed | 2024-12-14T17:40:23Z |
publishDate | 2021-01-01 |
publisher | IEEE |
record_format | Article |
series | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
spelling | doaj.art-d4cddc5f12944abcaee3b9c5d421f2272022-12-21T22:52:52ZengIEEEIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing2151-15352021-01-01144894491410.1109/JSTARS.2021.30732869404821Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth ObservationsJoel T. Johnson0https://orcid.org/0000-0002-6921-6059Kenneth C. Jezek1Giovanni Macelloni2https://orcid.org/0000-0002-9738-7939Marco Brogioni3Leung Tsang4https://orcid.org/0000-0003-3192-2799Emmanuel P. Dinnat5https://orcid.org/0000-0001-9003-1182Jeffrey P. Walker6Nan Ye7https://orcid.org/0000-0003-3007-8290Sidharth Misra8https://orcid.org/0000-0003-1738-6635Jeffrey R. Piepmeier9Rajat Bindlish10https://orcid.org/0000-0002-1913-0353David M. LeVine11https://orcid.org/0000-0002-9335-0741Peggy E. OaNeill12https://orcid.org/0000-0002-2596-8670Lars Kaleschke13Mark J. Andrews14https://orcid.org/0000-0001-6088-2832Caglar Yardim15https://orcid.org/0000-0002-0984-3982Mustafa Aksoy16https://orcid.org/0000-0001-5452-1862Michael Durand17Chi-Chih Chen18https://orcid.org/0000-0001-6016-7708Oguz Demir19Alexandra Bringer20Julie Z. Miller21Shannon T. Brown22https://orcid.org/0000-0002-7566-8537Ron Kwok23Tong Lee24Yann Kerr25Dara Entekhabi26Jinzheng Peng27https://orcid.org/0000-0003-2213-7182Andreas Colliander28https://orcid.org/0000-0003-4093-8119Steven Chan29Joseph A. MacGregor30https://orcid.org/0000-0002-5517-2235Brooke Medley31Roger DeRoo32https://orcid.org/0000-0001-8391-2950Mark Drinkwater33ElectroScience Laboratory, The Ohio State University, OH, ColumbusUSASchool of Earth Sciences, The Ohio State University, Columbus, OH, USADepartment of Remote Sensing, Nello Carrara Institute of Applied Physics National Research Council, Sesto Fiorentino, ItalyDepartment of Remote Sensing, Nello Carrara Institute of Applied Physics National Research Council, Sesto Fiorentino, ItalyUniversity of Michigan, Ann Arbor, MI, USANASA Jet Propulsion Laboratory, Pasadena, CA, USAUniversity of Michigan, Ann Arbor, MI, USAUniversity of Michigan, Ann Arbor, MI, USANASA Jet Propulsion Laboratory, Pasadena, CA, USANASA Goddard Space Flight Center, Greenbelt, MD, USANASA Goddard Space Flight Center, Greenbelt, MD, USANASA Goddard Space Flight Center, Greenbelt, MD, USANASA Goddard Space Flight Center, Greenbelt, MD, USADepartment of Sea Ice Physics, Alfred-Wegener-Institut für Polar und Meeresforschung, Bremerhaven, GermanyElectroScience Laboratory, The Ohio State University, OH, ColumbusUSAElectrical and Computer Engineering Department, Ohio State University, Columbus, OH, USAElectrical and Computer Engineering Department, University at Albany, Albany, NY, USASchool of Earth Sciences, The Ohio State University, Columbus, OH, USAElectroScience Laboratory, The Ohio State University, OH, ColumbusUSAElectroScience Laboratory, The Ohio State University, OH, ColumbusUSAElectroScience Laboratory, The Ohio State University, OH, ColumbusUSAEarth Observations, Cooperative Institute for Research in Environmental Sciences, Boulder, CO, USANASA Jet Propulsion Laboratory, Pasadena, CA, USAPolar Science Center, University of Washington Applied Physics Laboratory, Seattle, WA, USANASA Jet Propulsion Laboratory, Pasadena, CA, USACNES, CESBIO, Toulouse Cedex 9, FranceMIT, Cambridge, MA, USANASA Goddard Space Flight Center, Greenbelt, MD, USANASA Jet Propulsion Laboratory, Pasadena, CA, USANASA Jet Propulsion Laboratory, Pasadena, CA, USANASA Goddard Space Flight Center, Greenbelt, MD, USANASA Goddard Space Flight Center, Greenbelt, MD, USAUniversity of Michigan, Ann Arbor, MI, USAMission Science Division, ESA-ESTEC, Noordwijk, NetherlandsMicrowave radiometry has provided valuable spaceborne observations of Earth's geophysical properties for decades. The recent SMOS, Aquarius, and SMAP satellites have demonstrated the value of measurements at 1400 MHz for observing surface soil moisture, sea surface salinity, sea ice thickness, soil freeze/thaw state, and other geophysical variables. However, the information obtained is limited by penetration through the subsurface at 1400 MHz and by a reduced sensitivity to surface salinity in cold or wind-roughened waters. Recent airborne experiments have shown the potential of brightness temperature measurements from 500–1400 MHz to address these limitations by enabling sensing of soil moisture and sea ice thickness to greater depths, sensing of temperature deep within ice sheets, improved sensing of sea salinity in cold waters, and enhanced sensitivity to soil moisture under vegetation canopies. However, the absence of significant spectrum reserved for passive microwave measurements in the 500–1400 MHz band requires both an opportunistic sensing strategy and systems for reducing the impact of radio-frequency interference. Here, we summarize the potential advantages and applications of 500–1400 MHz microwave radiometry for Earth observation and review recent experiments and demonstrations of these concepts. We also describe the remaining questions and challenges to be addressed in advancing to future spaceborne operation of this technology along with recommendations for future research activities.https://ieeexplore.ieee.org/document/9404821/Earth observationsmicrowave radiometry |
spellingShingle | Joel T. Johnson Kenneth C. Jezek Giovanni Macelloni Marco Brogioni Leung Tsang Emmanuel P. Dinnat Jeffrey P. Walker Nan Ye Sidharth Misra Jeffrey R. Piepmeier Rajat Bindlish David M. LeVine Peggy E. OaNeill Lars Kaleschke Mark J. Andrews Caglar Yardim Mustafa Aksoy Michael Durand Chi-Chih Chen Oguz Demir Alexandra Bringer Julie Z. Miller Shannon T. Brown Ron Kwok Tong Lee Yann Kerr Dara Entekhabi Jinzheng Peng Andreas Colliander Steven Chan Joseph A. MacGregor Brooke Medley Roger DeRoo Mark Drinkwater Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Earth observations microwave radiometry |
title | Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations |
title_full | Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations |
title_fullStr | Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations |
title_full_unstemmed | Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations |
title_short | Microwave Radiometry at Frequencies From 500 to 1400 MHz: An Emerging Technology for Earth Observations |
title_sort | microwave radiometry at frequencies from 500 to 1400 mhz an emerging technology for earth observations |
topic | Earth observations microwave radiometry |
url | https://ieeexplore.ieee.org/document/9404821/ |
work_keys_str_mv | AT joeltjohnson microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT kennethcjezek microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT giovannimacelloni microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT marcobrogioni microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT leungtsang microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT emmanuelpdinnat microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT jeffreypwalker microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT nanye microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT sidharthmisra microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT jeffreyrpiepmeier microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT rajatbindlish microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT davidmlevine microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT peggyeoaneill microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT larskaleschke microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT markjandrews microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT caglaryardim microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT mustafaaksoy microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT michaeldurand microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT chichihchen microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT oguzdemir microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT alexandrabringer microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT juliezmiller microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT shannontbrown microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT ronkwok microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT tonglee microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT yannkerr microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT daraentekhabi microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT jinzhengpeng microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT andreascolliander microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT stevenchan microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT josephamacgregor microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT brookemedley microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT rogerderoo microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations AT markdrinkwater microwaveradiometryatfrequenciesfrom500to1400mhzanemergingtechnologyforearthobservations |