ECORE: A New Fast Automated Quantitative Mineral and Elemental Core Scanner

Scarce platinum group elements (PGE) are mainly concealed in massive sulfides, and finding economically viable ore bodies largely relies on their fast chemical mapping. Most core scanners provide incomplete mineralogical contents, but none also provide a complete chemical analysis including light el...

Full description

Bibliographic Details
Main Authors: Marie-Chloé Michaud Paradis, François R. Doucet, Kheireddine Rifai, Lütfü Ç. Özcan, Nawfel Azami, François Vidal
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Minerals
Subjects:
Online Access:https://www.mdpi.com/2075-163X/11/8/859
Description
Summary:Scarce platinum group elements (PGE) are mainly concealed in massive sulfides, and finding economically viable ore bodies largely relies on their fast chemical mapping. Most core scanners provide incomplete mineralogical contents, but none also provide a complete chemical analysis including light elements. This study investigates the performance of a fully automated laser-induced breakdown spectroscopy (LIBS) core scanner, the ECORE, by comparing its reliability to a scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) mineral mapper and its speed to infrared diffuse reflectance hyperspectral imagers (IR-HSI). The LIBS elemental imaging has been put to the test in our previous work, as well as the high-resolution mineralogical mapping. This paper reports the scaling up analytical applicability of LIBS as a high performance and high-speed drill core scanner. The analysis of a full core tray in this study is the first and largest 7.62 megapixels image done by a LIBS core scanner to our knowledge. Both high-resolution and low-resolution data are put together to express both mineralogical and chemical content as a function of depth.
ISSN:2075-163X