Combined unsupervised and semi-automated supervised analysis of flow cytometry data reveals cellular fingerprint associated with newly diagnosed pediatric type 1 diabetes

An unbiased and replicable profiling of type 1 diabetes (T1D)-specific circulating immunome at disease onset has yet to be identified due to experimental and patient selection limitations. Multicolor flow cytometry was performed on whole blood from a pediatric cohort of 107 patients with new-onset T...

Full description

Bibliographic Details
Main Authors: Camillo Bechi Genzano, Eugenia Bezzecchi, Debora Carnovale, Alessandra Mandelli, Elisa Morotti, Valeria Castorani, Valeria Favalli, Angela Stabilini, Vittoria Insalaco, Francesca Ragogna, Valentina Codazzi, Giulia Maria Scotti, Stefania Del Rosso, Benedetta Allegra Mazzi, Maurizio De Pellegrin, Andrea Giustina, Lorenzo Piemonti, Emanuele Bosi, Manuela Battaglia, Marco J. Morelli, Riccardo Bonfanti, Alessandra Petrelli
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-10-01
Series:Frontiers in Immunology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fimmu.2022.1026416/full
_version_ 1811257716442660864
author Camillo Bechi Genzano
Eugenia Bezzecchi
Eugenia Bezzecchi
Debora Carnovale
Alessandra Mandelli
Elisa Morotti
Elisa Morotti
Valeria Castorani
Valeria Favalli
Valeria Favalli
Angela Stabilini
Vittoria Insalaco
Francesca Ragogna
Valentina Codazzi
Giulia Maria Scotti
Stefania Del Rosso
Benedetta Allegra Mazzi
Maurizio De Pellegrin
Andrea Giustina
Andrea Giustina
Lorenzo Piemonti
Lorenzo Piemonti
Emanuele Bosi
Emanuele Bosi
Emanuele Bosi
Manuela Battaglia
Marco J. Morelli
Riccardo Bonfanti
Riccardo Bonfanti
Riccardo Bonfanti
Alessandra Petrelli
author_facet Camillo Bechi Genzano
Eugenia Bezzecchi
Eugenia Bezzecchi
Debora Carnovale
Alessandra Mandelli
Elisa Morotti
Elisa Morotti
Valeria Castorani
Valeria Favalli
Valeria Favalli
Angela Stabilini
Vittoria Insalaco
Francesca Ragogna
Valentina Codazzi
Giulia Maria Scotti
Stefania Del Rosso
Benedetta Allegra Mazzi
Maurizio De Pellegrin
Andrea Giustina
Andrea Giustina
Lorenzo Piemonti
Lorenzo Piemonti
Emanuele Bosi
Emanuele Bosi
Emanuele Bosi
Manuela Battaglia
Marco J. Morelli
Riccardo Bonfanti
Riccardo Bonfanti
Riccardo Bonfanti
Alessandra Petrelli
author_sort Camillo Bechi Genzano
collection DOAJ
description An unbiased and replicable profiling of type 1 diabetes (T1D)-specific circulating immunome at disease onset has yet to be identified due to experimental and patient selection limitations. Multicolor flow cytometry was performed on whole blood from a pediatric cohort of 107 patients with new-onset T1D, 85 relatives of T1D patients with 0-1 islet autoantibodies (pre-T1D_LR), 58 patients with celiac disease or autoimmune thyroiditis (CD_THY) and 76 healthy controls (HC). Unsupervised clustering of flow cytometry data, validated by a semi-automated gating strategy, confirmed previous findings showing selective increase of naïve CD4 T cells and plasmacytoid DCs, and revealed a decrease in CD56brightNK cells in T1D. Furthermore, a non-selective decrease of CD3+CD56+ regulatory T cells was observed in T1D. The frequency of naïve CD4 T cells at disease onset was associated with partial remission, while it was found unaltered in the pre-symptomatic stages of the disease. Thanks to a broad cohort of pediatric individuals and the implementation of unbiased approaches for the analysis of flow cytometry data, here we determined the circulating immune fingerprint of newly diagnosed pediatric T1D and provide a reference dataset to be exploited for validation or discovery purposes to unravel the pathogenesis of T1D.
first_indexed 2024-04-12T18:01:48Z
format Article
id doaj.art-d4d43b89ac9d42a1ad9479ca7e312d01
institution Directory Open Access Journal
issn 1664-3224
language English
last_indexed 2024-04-12T18:01:48Z
publishDate 2022-10-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Immunology
spelling doaj.art-d4d43b89ac9d42a1ad9479ca7e312d012022-12-22T03:22:09ZengFrontiers Media S.A.Frontiers in Immunology1664-32242022-10-011310.3389/fimmu.2022.10264161026416Combined unsupervised and semi-automated supervised analysis of flow cytometry data reveals cellular fingerprint associated with newly diagnosed pediatric type 1 diabetesCamillo Bechi Genzano0Eugenia Bezzecchi1Eugenia Bezzecchi2Debora Carnovale3Alessandra Mandelli4Elisa Morotti5Elisa Morotti6Valeria Castorani7Valeria Favalli8Valeria Favalli9Angela Stabilini10Vittoria Insalaco11Francesca Ragogna12Valentina Codazzi13Giulia Maria Scotti14Stefania Del Rosso15Benedetta Allegra Mazzi16Maurizio De Pellegrin17Andrea Giustina18Andrea Giustina19Lorenzo Piemonti20Lorenzo Piemonti21Emanuele Bosi22Emanuele Bosi23Emanuele Bosi24Manuela Battaglia25Marco J. Morelli26Riccardo Bonfanti27Riccardo Bonfanti28Riccardo Bonfanti29Alessandra Petrelli30Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, ItalyDiabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, ItalyCenter for Omics Sciences, IRCCS Ospedale San Raffaele, Milan, ItalyDiabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, ItalyDiabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, ItalyDiabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, ItalyDepartment of Pediatrics, IRCCS Ospedale San Raffaele, Milan, ItalyDiabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, ItalyDiabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, ItalyDepartment of Pediatrics, IRCCS Ospedale San Raffaele, Milan, ItalyDiabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, ItalyDiabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, ItalyDiabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, ItalyDiabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, ItalyDiabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, ItalyLaboratory Medicine, Autoimmunity Section, IRCCS Ospedale San Raffaele, Milan, ItalyImmuno-Hematology and Transfusion Medicine (ITMS), IRCCS Ospedale San Raffaele, Milan, ItalyPediatric Orthopedic and Traumatology Unit, IRCCS Ospedale San Raffaele, Milan, ItalyInstitute of Endocrine and Metabolic Sciences, IRCCS Ospedale San Raffaele, Milan, ItalyUniversità Vita-Salute San Raffaele, Milan, ItalyDiabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, ItalyUniversità Vita-Salute San Raffaele, Milan, ItalyDiabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, ItalyDepartment of General Medicine, Diabetes and Endocrinology, IRCCS Ospedale San Raffaele, Milan, ItalyUniversità Vita-Salute San Raffaele, Milan, ItalyDiabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, ItalyCenter for Omics Sciences, IRCCS Ospedale San Raffaele, Milan, ItalyDiabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, ItalyDepartment of Pediatrics, IRCCS Ospedale San Raffaele, Milan, ItalyUniversità Vita-Salute San Raffaele, Milan, ItalyDiabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, ItalyAn unbiased and replicable profiling of type 1 diabetes (T1D)-specific circulating immunome at disease onset has yet to be identified due to experimental and patient selection limitations. Multicolor flow cytometry was performed on whole blood from a pediatric cohort of 107 patients with new-onset T1D, 85 relatives of T1D patients with 0-1 islet autoantibodies (pre-T1D_LR), 58 patients with celiac disease or autoimmune thyroiditis (CD_THY) and 76 healthy controls (HC). Unsupervised clustering of flow cytometry data, validated by a semi-automated gating strategy, confirmed previous findings showing selective increase of naïve CD4 T cells and plasmacytoid DCs, and revealed a decrease in CD56brightNK cells in T1D. Furthermore, a non-selective decrease of CD3+CD56+ regulatory T cells was observed in T1D. The frequency of naïve CD4 T cells at disease onset was associated with partial remission, while it was found unaltered in the pre-symptomatic stages of the disease. Thanks to a broad cohort of pediatric individuals and the implementation of unbiased approaches for the analysis of flow cytometry data, here we determined the circulating immune fingerprint of newly diagnosed pediatric T1D and provide a reference dataset to be exploited for validation or discovery purposes to unravel the pathogenesis of T1D.https://www.frontiersin.org/articles/10.3389/fimmu.2022.1026416/fulltype 1 diabetesfingerprintsimmune markerspediatric diabetesflow cytometrycomputational biology
spellingShingle Camillo Bechi Genzano
Eugenia Bezzecchi
Eugenia Bezzecchi
Debora Carnovale
Alessandra Mandelli
Elisa Morotti
Elisa Morotti
Valeria Castorani
Valeria Favalli
Valeria Favalli
Angela Stabilini
Vittoria Insalaco
Francesca Ragogna
Valentina Codazzi
Giulia Maria Scotti
Stefania Del Rosso
Benedetta Allegra Mazzi
Maurizio De Pellegrin
Andrea Giustina
Andrea Giustina
Lorenzo Piemonti
Lorenzo Piemonti
Emanuele Bosi
Emanuele Bosi
Emanuele Bosi
Manuela Battaglia
Marco J. Morelli
Riccardo Bonfanti
Riccardo Bonfanti
Riccardo Bonfanti
Alessandra Petrelli
Combined unsupervised and semi-automated supervised analysis of flow cytometry data reveals cellular fingerprint associated with newly diagnosed pediatric type 1 diabetes
Frontiers in Immunology
type 1 diabetes
fingerprints
immune markers
pediatric diabetes
flow cytometry
computational biology
title Combined unsupervised and semi-automated supervised analysis of flow cytometry data reveals cellular fingerprint associated with newly diagnosed pediatric type 1 diabetes
title_full Combined unsupervised and semi-automated supervised analysis of flow cytometry data reveals cellular fingerprint associated with newly diagnosed pediatric type 1 diabetes
title_fullStr Combined unsupervised and semi-automated supervised analysis of flow cytometry data reveals cellular fingerprint associated with newly diagnosed pediatric type 1 diabetes
title_full_unstemmed Combined unsupervised and semi-automated supervised analysis of flow cytometry data reveals cellular fingerprint associated with newly diagnosed pediatric type 1 diabetes
title_short Combined unsupervised and semi-automated supervised analysis of flow cytometry data reveals cellular fingerprint associated with newly diagnosed pediatric type 1 diabetes
title_sort combined unsupervised and semi automated supervised analysis of flow cytometry data reveals cellular fingerprint associated with newly diagnosed pediatric type 1 diabetes
topic type 1 diabetes
fingerprints
immune markers
pediatric diabetes
flow cytometry
computational biology
url https://www.frontiersin.org/articles/10.3389/fimmu.2022.1026416/full
work_keys_str_mv AT camillobechigenzano combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT eugeniabezzecchi combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT eugeniabezzecchi combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT deboracarnovale combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT alessandramandelli combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT elisamorotti combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT elisamorotti combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT valeriacastorani combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT valeriafavalli combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT valeriafavalli combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT angelastabilini combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT vittoriainsalaco combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT francescaragogna combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT valentinacodazzi combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT giuliamariascotti combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT stefaniadelrosso combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT benedettaallegramazzi combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT mauriziodepellegrin combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT andreagiustina combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT andreagiustina combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT lorenzopiemonti combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT lorenzopiemonti combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT emanuelebosi combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT emanuelebosi combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT emanuelebosi combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT manuelabattaglia combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT marcojmorelli combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT riccardobonfanti combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT riccardobonfanti combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT riccardobonfanti combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes
AT alessandrapetrelli combinedunsupervisedandsemiautomatedsupervisedanalysisofflowcytometrydatarevealscellularfingerprintassociatedwithnewlydiagnosedpediatrictype1diabetes