Existence of positive solutions for boundary value problem of second-order functional differential equation
We use a fixed point index theorem in cones to study the existence of positive solutions for boundary value problems of second-order functional differential equations of the form $$\left\{ \begin{array}{ll} y''(x)+r(x)f(y(w(x)))=0,&0<x<1,\\ \alpha y(x)-\beta y'(x)=\xi (x),&a...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
1998-01-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=11 |
Summary: | We use a fixed point index theorem in cones to study the existence of positive solutions for boundary value problems of second-order functional differential equations of the form $$\left\{ \begin{array}{ll} y''(x)+r(x)f(y(w(x)))=0,&0<x<1,\\ \alpha y(x)-\beta y'(x)=\xi (x),&a\leq x\leq 0,\\ \gamma y(x)+\delta y'(x)=\eta (x),&1\leq x\leq b; \end{array}\right.$$ where $w(x)$ is a continuous function defined on $[0,1]$ and $r(x)$ is allowed to have singularities on $[0,1]$. The result here is the generalization of a corresponding result for ordinary differential equations. |
---|---|
ISSN: | 1417-3875 |