Some classes of dispersible dcsl-graphs

A distance compatible set labeling (dcsl) of a connected graph $G$ is an injective set assignment $f : V(G) \rightarrow 2^{X},$ $X$ being a non empty ground set, such that the corresponding induced function $f^{\oplus} :E(G) \rightarrow 2^{X}\setminus \{\phi\}$ given by $f^{\oplus}(uv)= f(u)\oplus f...

Full description

Bibliographic Details
Main Authors: J. Jinto, K.A. Germina, P. Shaini
Format: Article
Language:English
Published: Vasyl Stefanyk Precarpathian National University 2018-01-01
Series:Karpatsʹkì Matematičnì Publìkacìï
Subjects:
Online Access:https://journals.pnu.edu.ua/index.php/cmp/article/view/1456
_version_ 1818240029571416064
author J. Jinto
K.A. Germina
P. Shaini
author_facet J. Jinto
K.A. Germina
P. Shaini
author_sort J. Jinto
collection DOAJ
description A distance compatible set labeling (dcsl) of a connected graph $G$ is an injective set assignment $f : V(G) \rightarrow 2^{X},$ $X$ being a non empty ground set, such that the corresponding induced function $f^{\oplus} :E(G) \rightarrow 2^{X}\setminus \{\phi\}$ given by $f^{\oplus}(uv)= f(u)\oplus f(v)$ satisfies $ |f^{\oplus}(uv)| = k_{(u,v)}^{f}d_{G}(u,v) $ for every pair of distinct vertices $u, v \in V(G),$ where $d_{G}(u,v)$ denotes the path distance between $u$ and $v$ and $k_{(u,v)}^{f}$ is a constant, not necessarily an integer, depending on the pair of vertices $u,v$ chosen. $G$ is distance compatible set labeled (dcsl) graph if it admits a dcsl. A dcsl $f$ of a $(p, q)$-graph $G$ is dispersive if the constants of proportionality $k^f_{(u,v)}$ with respect to $f, u \neq v, u, v \in  V(G)$ are all distinct and $G$ is dispersible if it admits a dispersive dcsl. In this paper we proved that all paths and graphs with diameter less than or equal to $2$ are dispersible.
first_indexed 2024-12-12T13:06:57Z
format Article
id doaj.art-d4e66bc842f94a3cbdc0296cdfce9d43
institution Directory Open Access Journal
issn 2075-9827
2313-0210
language English
last_indexed 2024-12-12T13:06:57Z
publishDate 2018-01-01
publisher Vasyl Stefanyk Precarpathian National University
record_format Article
series Karpatsʹkì Matematičnì Publìkacìï
spelling doaj.art-d4e66bc842f94a3cbdc0296cdfce9d432022-12-22T00:23:38ZengVasyl Stefanyk Precarpathian National UniversityKarpatsʹkì Matematičnì Publìkacìï2075-98272313-02102018-01-019212813310.15330/cmp.9.2.128-1331456Some classes of dispersible dcsl-graphsJ. Jinto0K.A. Germina1P. Shaini2Department of Mathematics, Central University of Kerala, Kasaragod, Kerala 671314, IndiaDepartment of Mathematics, Central University of Kerala, Kasaragod, Kerala 671314, IndiaDepartment of Mathematics, Central University of Kerala, Kasaragod, Kerala 671314, IndiaA distance compatible set labeling (dcsl) of a connected graph $G$ is an injective set assignment $f : V(G) \rightarrow 2^{X},$ $X$ being a non empty ground set, such that the corresponding induced function $f^{\oplus} :E(G) \rightarrow 2^{X}\setminus \{\phi\}$ given by $f^{\oplus}(uv)= f(u)\oplus f(v)$ satisfies $ |f^{\oplus}(uv)| = k_{(u,v)}^{f}d_{G}(u,v) $ for every pair of distinct vertices $u, v \in V(G),$ where $d_{G}(u,v)$ denotes the path distance between $u$ and $v$ and $k_{(u,v)}^{f}$ is a constant, not necessarily an integer, depending on the pair of vertices $u,v$ chosen. $G$ is distance compatible set labeled (dcsl) graph if it admits a dcsl. A dcsl $f$ of a $(p, q)$-graph $G$ is dispersive if the constants of proportionality $k^f_{(u,v)}$ with respect to $f, u \neq v, u, v \in  V(G)$ are all distinct and $G$ is dispersible if it admits a dispersive dcsl. In this paper we proved that all paths and graphs with diameter less than or equal to $2$ are dispersible.https://journals.pnu.edu.ua/index.php/cmp/article/view/1456set labeling of graphsdcsl graphsdispersible dcsl graphs
spellingShingle J. Jinto
K.A. Germina
P. Shaini
Some classes of dispersible dcsl-graphs
Karpatsʹkì Matematičnì Publìkacìï
set labeling of graphs
dcsl graphs
dispersible dcsl graphs
title Some classes of dispersible dcsl-graphs
title_full Some classes of dispersible dcsl-graphs
title_fullStr Some classes of dispersible dcsl-graphs
title_full_unstemmed Some classes of dispersible dcsl-graphs
title_short Some classes of dispersible dcsl-graphs
title_sort some classes of dispersible dcsl graphs
topic set labeling of graphs
dcsl graphs
dispersible dcsl graphs
url https://journals.pnu.edu.ua/index.php/cmp/article/view/1456
work_keys_str_mv AT jjinto someclassesofdispersibledcslgraphs
AT kagermina someclassesofdispersibledcslgraphs
AT pshaini someclassesofdispersibledcslgraphs