EMG feedback improves grasping of compliant objects using a myoelectric prosthesis
Abstract Background Closing the control loop in myoelectric prostheses by providing artificial somatosensory feedback is recognized as an important goal. However, designing a feedback interface that is effective in realistic conditions is still a challenge. Namely, in some situations, feedback can b...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2023-09-01
|
Series: | Journal of NeuroEngineering and Rehabilitation |
Subjects: | |
Online Access: | https://doi.org/10.1186/s12984-023-01237-1 |
_version_ | 1797577704830140416 |
---|---|
author | Jack Tchimino Jakob Lund Dideriksen Strahinja Dosen |
author_facet | Jack Tchimino Jakob Lund Dideriksen Strahinja Dosen |
author_sort | Jack Tchimino |
collection | DOAJ |
description | Abstract Background Closing the control loop in myoelectric prostheses by providing artificial somatosensory feedback is recognized as an important goal. However, designing a feedback interface that is effective in realistic conditions is still a challenge. Namely, in some situations, feedback can be redundant, as the information it provides can be readily obtained through hearing or vision (e.g., grasping force estimated from the deformation of a compliant object). EMG feedback is a non-invasive method wherein the tactile stimulation conveys to the user the level of their own myoelectric signal, hence a measurement intrinsic to the interface, which cannot be accessed incidentally. Methods The present study investigated the efficacy of EMG feedback in prosthesis force control when 10 able-bodied participants and a person with transradial amputation used a myoelectric prosthesis to grasp compliant objects of different stiffness values. The performance with feedback was compared to that achieved when the participants relied solely on incidental cues. Results The main outcome measures were the task success rate and completion time. EMG feedback resulted in significantly higher success rates regardless of pin stiffness, indicating that the feedback enhanced the accuracy of force application despite the abundance of incidental cues. Contrary to expectations, there was no difference in the completion time between the two feedback conditions. Additionally, the data revealed that the participants could produce smoother control signals when they received EMG feedback as well as more consistent commands across trials, signifying better control of the system by the participants. Conclusions The results presented in this study further support the efficacy of EMG feedback when closing the prosthesis control loop by demonstrating its benefits in particularly challenging conditions which maximized the utility of intrinsic feedback sources. |
first_indexed | 2024-03-10T22:11:46Z |
format | Article |
id | doaj.art-d4ee4290afe940439941c159075460ae |
institution | Directory Open Access Journal |
issn | 1743-0003 |
language | English |
last_indexed | 2024-03-10T22:11:46Z |
publishDate | 2023-09-01 |
publisher | BMC |
record_format | Article |
series | Journal of NeuroEngineering and Rehabilitation |
spelling | doaj.art-d4ee4290afe940439941c159075460ae2023-11-19T12:35:06ZengBMCJournal of NeuroEngineering and Rehabilitation1743-00032023-09-0120111410.1186/s12984-023-01237-1EMG feedback improves grasping of compliant objects using a myoelectric prosthesisJack Tchimino0Jakob Lund Dideriksen1Strahinja Dosen2Neurorehabilitation Systems, Department of Health Science and Technology, Aalborg UniversityNeurorehabilitation Systems, Department of Health Science and Technology, Aalborg UniversityNeurorehabilitation Systems, Department of Health Science and Technology, Aalborg UniversityAbstract Background Closing the control loop in myoelectric prostheses by providing artificial somatosensory feedback is recognized as an important goal. However, designing a feedback interface that is effective in realistic conditions is still a challenge. Namely, in some situations, feedback can be redundant, as the information it provides can be readily obtained through hearing or vision (e.g., grasping force estimated from the deformation of a compliant object). EMG feedback is a non-invasive method wherein the tactile stimulation conveys to the user the level of their own myoelectric signal, hence a measurement intrinsic to the interface, which cannot be accessed incidentally. Methods The present study investigated the efficacy of EMG feedback in prosthesis force control when 10 able-bodied participants and a person with transradial amputation used a myoelectric prosthesis to grasp compliant objects of different stiffness values. The performance with feedback was compared to that achieved when the participants relied solely on incidental cues. Results The main outcome measures were the task success rate and completion time. EMG feedback resulted in significantly higher success rates regardless of pin stiffness, indicating that the feedback enhanced the accuracy of force application despite the abundance of incidental cues. Contrary to expectations, there was no difference in the completion time between the two feedback conditions. Additionally, the data revealed that the participants could produce smoother control signals when they received EMG feedback as well as more consistent commands across trials, signifying better control of the system by the participants. Conclusions The results presented in this study further support the efficacy of EMG feedback when closing the prosthesis control loop by demonstrating its benefits in particularly challenging conditions which maximized the utility of intrinsic feedback sources.https://doi.org/10.1186/s12984-023-01237-1Closed-loop controlProsthesisEMG feedbackForce feedbackCompliant objects |
spellingShingle | Jack Tchimino Jakob Lund Dideriksen Strahinja Dosen EMG feedback improves grasping of compliant objects using a myoelectric prosthesis Journal of NeuroEngineering and Rehabilitation Closed-loop control Prosthesis EMG feedback Force feedback Compliant objects |
title | EMG feedback improves grasping of compliant objects using a myoelectric prosthesis |
title_full | EMG feedback improves grasping of compliant objects using a myoelectric prosthesis |
title_fullStr | EMG feedback improves grasping of compliant objects using a myoelectric prosthesis |
title_full_unstemmed | EMG feedback improves grasping of compliant objects using a myoelectric prosthesis |
title_short | EMG feedback improves grasping of compliant objects using a myoelectric prosthesis |
title_sort | emg feedback improves grasping of compliant objects using a myoelectric prosthesis |
topic | Closed-loop control Prosthesis EMG feedback Force feedback Compliant objects |
url | https://doi.org/10.1186/s12984-023-01237-1 |
work_keys_str_mv | AT jacktchimino emgfeedbackimprovesgraspingofcompliantobjectsusingamyoelectricprosthesis AT jakoblunddideriksen emgfeedbackimprovesgraspingofcompliantobjectsusingamyoelectricprosthesis AT strahinjadosen emgfeedbackimprovesgraspingofcompliantobjectsusingamyoelectricprosthesis |