Efficient Prediction of Water Quality Index (WQI) Using Machine Learning Algorithms

Abstract The quality of water has a direct influence on both human health and the environment. Water is utilized for a variety of purposes, including drinking, agriculture, and industrial use. The water quality index (WQI) is a critical indication for proper water management. The purpose of this wor...

Full description

Bibliographic Details
Main Authors: Md. Mehedi Hassan, Md. Mahedi Hassan, Laboni Akter, Md. Mushfiqur Rahman, Sadika Zaman, Khan Md. Hasib, Nusrat Jahan, Raisun Nasa Smrity, Jerin Farhana, M. Raihan, Swarnali Mollick
Format: Article
Language:English
Published: Springer Nature 2021-12-01
Series:Human-Centric Intelligent Systems
Subjects:
Online Access:https://doi.org/10.2991/hcis.k.211203.001
Description
Summary:Abstract The quality of water has a direct influence on both human health and the environment. Water is utilized for a variety of purposes, including drinking, agriculture, and industrial use. The water quality index (WQI) is a critical indication for proper water management. The purpose of this work was to use machine learning techniques such as RF, NN, MLR, SVM, and BTM to categorize a dataset of water quality in various places across India. Water quality is dictated by features such as dissolved oxygen (DO), total coliform (TC), biological oxygen demand (BOD), Nitrate, pH, and electric conductivity (EC). These features are handled in five steps: data pre-processing using min-max normalization and missing data management using RF, feature correlation, applied machine learning classification, and model’s feature importance. The highest accuracy Kappa, Accuracy Lower, and Accuracy Upper findings in this research are 99.83, 99.17, 99.07, and 99.99, respectively. The finding showed that Nitrate, PH, conductivity, DO, TC, and BOD are the key qualities that contribute to the orderly classification of water quality, with Variable Importance values of 74.78, 36.805, 81.494, 105.770, 105.166, and 130.173, respectively.
ISSN:2667-1336