Plant facilitation shifts along with soil moisture and phosphorus gradients via rhizosphere interaction in the maize-grass pea intercropping system

Plant-plant facilitation is widely studied to increase productivity and resource utilization in cereal-legume intercropping system. However, physiological and ecological mechanisms driving interspecific interaction shift along the environmental gradients is largely unknown. To clarify this issue, we...

Full description

Bibliographic Details
Main Authors: Shuang-Guo Zhu, Zheng-Guo Cheng, Asfa Batool, Yi-Bo Wang, Jing Wang, Rui Zhou, Aziz Khan, Sai-Yong Zhu, Yu-Miao Yang, Wei Wang, Hao Zhu, Bao-Zhong Wang, Hong-Yan Tao, You-Cai Xiong
Format: Article
Language:English
Published: Elsevier 2022-06-01
Series:Ecological Indicators
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1470160X22003727
Description
Summary:Plant-plant facilitation is widely studied to increase productivity and resource utilization in cereal-legume intercropping system. However, physiological and ecological mechanisms driving interspecific interaction shift along the environmental gradients is largely unknown. To clarify this issue, we first tested plant-plant facilitation along with four phosphorus (P) gradients in maize-grass pea intercropping system. Results illustrated a progressive transition of seed yield-based facilitation from mutually facilitated (+/+) to maize facilitated but grass pea as facilitator (+/-) along with low to high P gradients. Secondly, above trend was evidently enhanced when combining with drought stress gradients, in which severe drought amplified facilitative effects, whereas the magnitude of facilitation was relatively weak under well-watered condition. Interestingly, biomass-based facilitation transition did not synchronize with seed-based one, in which occurred in a broader threshold range of water and P gradients. Specifically, total yield, biomass, N and P uptake increased by 0.5%, 4.1%, 1.8% and 2.9% under the sufficient P and water availability, whereas these indicators increased by 25.3%, 18.5%, 20.5% and 21.4% in P and water deficient soils. And the total net effect was positive under all the environmental conditions. Rhizosphere interaction plays a crucial role in facilitation judgment, and the driving mechanism was associated with soil acidification and microbial community promotion under P-deficient condition. Under low soil moisture and available P, soil acidification and lower rhizosphere soil pH of intercropped maize were observed. Rhizosphere phosphatase secretion were significantly activated in P-deficient soils and accelerated the mineralization of soil organophosphorus, and the microbial biomass P was improved for stronger facilitation. Taken together, our findings confirmed the P and water driven facilitation shift along with stress gradients and highlighted the roles of rhizosphere interaction in affecting species diversity advantage. In conclusion, our work provided a relatively full picture for plant facilitation evaluation and more accurate management regarding intercropping productivity.
ISSN:1470-160X