Summary: | Bipyridine and related compounds are starting materials or precursors for a variety of valuable substances such as biologically active molecules, ligands for catalysts, photosensitizers, viologens, and supramolecular architectures. Thus, it is important to classify their synthesis methods and understand their characteristics. Representative examples include methods using homo and heterocoupling of pyridine derivatives in the presence of a catalyst. Because bipyridine compounds strongly coordinate with metal centers, a decrease in catalytic activity and yield is often observed in the reaction system. To address this issue, this review provides insights into advances over the last ~30 years in bipyridine synthesis using metal complexes under both homogeneous and heterogeneous conditions. Moreover, strategies for bipyridine synthesis involving sulfur and phosphorous compounds are examined. These alternative pathways offer promising avenues for overcoming the challenges associated with traditional catalysis methods, providing a more comprehensive understanding of the synthesis landscape.
|