Low-Voltage and Low-Power True-Single-Phase 16-Transistor Flip-Flop Design

A low-voltage and low-power true single-phase flip-flop that minimum the total transistor count by using the pass transistor logic circuit scheme is proposed in this paper. Optimization measures lead to a new flip-flop design with better various performances such as speed, power, energy, and layout...

Full description

Bibliographic Details
Main Authors: Jin-Fa Lin, Zheng-Jie Hong, Jun-Ting Wu, Xin-You Tung, Cheng-Hsueh Yang, Yu-Cheng Yen
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/15/5696
Description
Summary:A low-voltage and low-power true single-phase flip-flop that minimum the total transistor count by using the pass transistor logic circuit scheme is proposed in this paper. Optimization measures lead to a new flip-flop design with better various performances such as speed, power, energy, and layout area. Based on post-layout simulation results using the TSMC CMOS 180 nm and 90 nm technologies, the proposed design achieves the conventional transmission-gate-based flip-flop design with a 53.6% reduction in power consumption and a 63.2% reduction in energy, with 12.5% input data switching activity. In order to further the performance parameters of the proposed design, a shift-register design has been realized. Experimental measurements at 0.5 V/0.5 MHz show that this proposed design reduces power consumption by 47.3% while achieving a layout area reduction of 30.5% compared to the conventional design.
ISSN:1424-8220