Some Addition Formulas for Fibonacci, Pell and Jacobsthal Numbers

In this paper, we obtain a closed form for F?i=1k${F_{\sum\nolimits_{i = 1}^k {} }}$, P?i=1k${P_{\sum\nolimits_{i = 1}^k {} }}$and J?i=1k${J_{\sum\nolimits_{i = 1}^k {} }}$ for some positive integers k where Fr, Pr and Jr are the rth Fibonacci, Pell and Jacobsthal numbers, respectively. We also give...

Full description

Bibliographic Details
Main Authors: Bilgici Göksal, Şentürk Tuncay Deniz
Format: Article
Language:English
Published: Sciendo 2019-09-01
Series:Annales Mathematicae Silesianae
Subjects:
Online Access:http://www.degruyter.com/view/j/amsil.2019.33.issue-1/amsil-2019-0005/amsil-2019-0005.xml?format=INT
_version_ 1818210102685990912
author Bilgici Göksal
Şentürk Tuncay Deniz
author_facet Bilgici Göksal
Şentürk Tuncay Deniz
author_sort Bilgici Göksal
collection DOAJ
description In this paper, we obtain a closed form for F?i=1k${F_{\sum\nolimits_{i = 1}^k {} }}$, P?i=1k${P_{\sum\nolimits_{i = 1}^k {} }}$and J?i=1k${J_{\sum\nolimits_{i = 1}^k {} }}$ for some positive integers k where Fr, Pr and Jr are the rth Fibonacci, Pell and Jacobsthal numbers, respectively. We also give three open problems for the general cases F?i=1n${F_{\sum\nolimits_{i = 1}^n {} }}$, P?i=1n${P_{\sum\nolimits_{i = 1}^n {} }}$ and J?i=1n${J_{\sum\nolimits_{i = 1}^n {} }}$for any arbitrary positive integer n.
first_indexed 2024-12-12T05:11:16Z
format Article
id doaj.art-d525303f3fa0420594152db006e72144
institution Directory Open Access Journal
issn 2391-4238
language English
last_indexed 2024-12-12T05:11:16Z
publishDate 2019-09-01
publisher Sciendo
record_format Article
series Annales Mathematicae Silesianae
spelling doaj.art-d525303f3fa0420594152db006e721442022-12-22T00:36:54ZengSciendoAnnales Mathematicae Silesianae2391-42382019-09-01331556510.2478/amsil-2019-0005amsil-2019-0005Some Addition Formulas for Fibonacci, Pell and Jacobsthal NumbersBilgici Göksal0Şentürk Tuncay Deniz1Department of Computer Education and Instructional Technologies, Kastamonu University, 37200, KastamonuTurkeyDepartment of Mathematics Institute of Science and Technology, Kastamonu University, 37150, KastamonuTurkeyIn this paper, we obtain a closed form for F?i=1k${F_{\sum\nolimits_{i = 1}^k {} }}$, P?i=1k${P_{\sum\nolimits_{i = 1}^k {} }}$and J?i=1k${J_{\sum\nolimits_{i = 1}^k {} }}$ for some positive integers k where Fr, Pr and Jr are the rth Fibonacci, Pell and Jacobsthal numbers, respectively. We also give three open problems for the general cases F?i=1n${F_{\sum\nolimits_{i = 1}^n {} }}$, P?i=1n${P_{\sum\nolimits_{i = 1}^n {} }}$ and J?i=1n${J_{\sum\nolimits_{i = 1}^n {} }}$for any arbitrary positive integer n.http://www.degruyter.com/view/j/amsil.2019.33.issue-1/amsil-2019-0005/amsil-2019-0005.xml?format=INTFibonacci numbersPell numbersJacobsthal numbers11B3911K3111Y55
spellingShingle Bilgici Göksal
Şentürk Tuncay Deniz
Some Addition Formulas for Fibonacci, Pell and Jacobsthal Numbers
Annales Mathematicae Silesianae
Fibonacci numbers
Pell numbers
Jacobsthal numbers
11B39
11K31
11Y55
title Some Addition Formulas for Fibonacci, Pell and Jacobsthal Numbers
title_full Some Addition Formulas for Fibonacci, Pell and Jacobsthal Numbers
title_fullStr Some Addition Formulas for Fibonacci, Pell and Jacobsthal Numbers
title_full_unstemmed Some Addition Formulas for Fibonacci, Pell and Jacobsthal Numbers
title_short Some Addition Formulas for Fibonacci, Pell and Jacobsthal Numbers
title_sort some addition formulas for fibonacci pell and jacobsthal numbers
topic Fibonacci numbers
Pell numbers
Jacobsthal numbers
11B39
11K31
11Y55
url http://www.degruyter.com/view/j/amsil.2019.33.issue-1/amsil-2019-0005/amsil-2019-0005.xml?format=INT
work_keys_str_mv AT bilgicigoksal someadditionformulasforfibonaccipellandjacobsthalnumbers
AT senturktuncaydeniz someadditionformulasforfibonaccipellandjacobsthalnumbers