Development of a novel and specialised cementitious matrix overlay for anode embedment in impressed current cathodic protection (ICCP) systems for reinforced concrete bridges

Impressed Current Cathodic Protection (ICCP) is a widely utilised method for safeguarding reinforced concrete (RC) structures, including bridges, in marine environments. However, certain ICCP systems encounter degradation of the backfill mortar caused by acid formation at the anode. The acid produce...

Full description

Bibliographic Details
Main Authors: Hamid Fatemi, S. Ali Hadigheh, Yunyun Tao, Georgius Adam
Format: Article
Language:English
Published: Elsevier 2024-07-01
Series:Case Studies in Construction Materials
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2214509524000597
Description
Summary:Impressed Current Cathodic Protection (ICCP) is a widely utilised method for safeguarding reinforced concrete (RC) structures, including bridges, in marine environments. However, certain ICCP systems encounter degradation of the backfill mortar caused by acid formation at the anode. The acid produced reacts with the anode backfill mortar, compromising the functioning of the cathodic protection system. Rectifying the acidification issue typically involves replacing the backfill mortar and, in some cases, even the anode when it is negatively impacted by acid attack. This paper presents, for the first time, a specialised sustainable cementitious matrix that exhibits excellent acid resistance, intended for use as the anode's backfill material in ICCP systems. The proposed mortar effectively mitigates the effects of acidification around the anode, significantly enhancing the durability of the mortar and, consequently, the service life of bridges equipped with ICCP systems. The mechanical and durability performance of the mortar in an acidic environment is evaluated through various tests, including gravimetric analysis, dimensional changes, diffusion depth, compressive strength, direct tension, slant shear, impact resistance, and interface integrity assessments. Additionally, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques are employed to investigate the material's performance. Subsequently, the specialised mortar is applied to cover Mixed Metal Oxide (MMO) activated titanium mesh anodes of the ICCP system in a reinforced concrete bridge, while its performance is continuously monitored. The results demonstrate that the proposed mortar effectively eliminates acidification issues and improves the performance and longevity of ICCP systems in harsh marine environments.
ISSN:2214-5095