Prediksi Kecepatan Angin Jangka Menengah dengan Artificial Neural Network untuk Estimasi Daya Listrik Tenaga Angin (Studi Kasus: Kota Sabang)

Indonesia, as a country at the equator, has a very large renewable energy potential that can be used as a source of electrical energy. Electricity consumption in Indonesia, especially in Aceh, continues to increase annually because of population growth and increasing economic needs. Recently, the co...

Full description

Bibliographic Details
Main Authors: Abdul Malek, Suriadi Suriadi, Khairun Saddami
Format: Article
Language:English
Published: University of Serambi Mekkah 2023-05-01
Series:Jurnal Serambi Engineering
Subjects:
Online Access:https://ojs.serambimekkah.ac.id/jse/article/view/6010
_version_ 1797755246088290304
author Abdul Malek
Suriadi Suriadi
Khairun Saddami
author_facet Abdul Malek
Suriadi Suriadi
Khairun Saddami
author_sort Abdul Malek
collection DOAJ
description Indonesia, as a country at the equator, has a very large renewable energy potential that can be used as a source of electrical energy. Electricity consumption in Indonesia, especially in Aceh, continues to increase annually because of population growth and increasing economic needs. Recently, the construction of power plants has been considered to be environmentally friendly and economical. One of the efforts that can be made is the development of wind-power plants. The availability of certain wind speeds was expected. Therefore, accurate prediction data must be used as the basis for building wind power plants. To increase the accuracy of wind speed prediction by looking at the error rate in predicting the amount of wind speed generated using an Artificial Neural Network with feed-forward and feed-backward functions from the back propagation algorithm (BPNN). The results of the application using the Neural Network algorithm with a back propagation Neural Network (BPNN) to predict wind speed show that the Neural Network algorithm can predict wind speed with an error of 0.0036. In July 2021, the estimated energy demand is 81.5 KWH.
first_indexed 2024-03-12T17:45:04Z
format Article
id doaj.art-d53451a5b4a442a39bbc21886908ab2b
institution Directory Open Access Journal
issn 2528-3561
2541-1934
language English
last_indexed 2024-03-12T17:45:04Z
publishDate 2023-05-01
publisher University of Serambi Mekkah
record_format Article
series Jurnal Serambi Engineering
spelling doaj.art-d53451a5b4a442a39bbc21886908ab2b2023-08-03T19:13:01ZengUniversity of Serambi MekkahJurnal Serambi Engineering2528-35612541-19342023-05-018310.32672/jse.v8i3.60104472Prediksi Kecepatan Angin Jangka Menengah dengan Artificial Neural Network untuk Estimasi Daya Listrik Tenaga Angin (Studi Kasus: Kota Sabang)Abdul Malek0Suriadi Suriadi1Khairun Saddami2Teknik Elektro, Fakultas Teknik, Universitas Syiah Kuala Banda Aceh IndonesiaTeknik Elektro, Fakultas Teknik, Universitas Syiah Kuala Banda Aceh IndonesiaTeknik Elektro, Fakultas Teknik, Universitas Syiah Kuala Banda Aceh IndonesiaIndonesia, as a country at the equator, has a very large renewable energy potential that can be used as a source of electrical energy. Electricity consumption in Indonesia, especially in Aceh, continues to increase annually because of population growth and increasing economic needs. Recently, the construction of power plants has been considered to be environmentally friendly and economical. One of the efforts that can be made is the development of wind-power plants. The availability of certain wind speeds was expected. Therefore, accurate prediction data must be used as the basis for building wind power plants. To increase the accuracy of wind speed prediction by looking at the error rate in predicting the amount of wind speed generated using an Artificial Neural Network with feed-forward and feed-backward functions from the back propagation algorithm (BPNN). The results of the application using the Neural Network algorithm with a back propagation Neural Network (BPNN) to predict wind speed show that the Neural Network algorithm can predict wind speed with an error of 0.0036. In July 2021, the estimated energy demand is 81.5 KWH.https://ojs.serambimekkah.ac.id/jse/article/view/6010wind speed, artificial neural network, electrical energy, sabang, wind power
spellingShingle Abdul Malek
Suriadi Suriadi
Khairun Saddami
Prediksi Kecepatan Angin Jangka Menengah dengan Artificial Neural Network untuk Estimasi Daya Listrik Tenaga Angin (Studi Kasus: Kota Sabang)
Jurnal Serambi Engineering
wind speed, artificial neural network, electrical energy, sabang, wind power
title Prediksi Kecepatan Angin Jangka Menengah dengan Artificial Neural Network untuk Estimasi Daya Listrik Tenaga Angin (Studi Kasus: Kota Sabang)
title_full Prediksi Kecepatan Angin Jangka Menengah dengan Artificial Neural Network untuk Estimasi Daya Listrik Tenaga Angin (Studi Kasus: Kota Sabang)
title_fullStr Prediksi Kecepatan Angin Jangka Menengah dengan Artificial Neural Network untuk Estimasi Daya Listrik Tenaga Angin (Studi Kasus: Kota Sabang)
title_full_unstemmed Prediksi Kecepatan Angin Jangka Menengah dengan Artificial Neural Network untuk Estimasi Daya Listrik Tenaga Angin (Studi Kasus: Kota Sabang)
title_short Prediksi Kecepatan Angin Jangka Menengah dengan Artificial Neural Network untuk Estimasi Daya Listrik Tenaga Angin (Studi Kasus: Kota Sabang)
title_sort prediksi kecepatan angin jangka menengah dengan artificial neural network untuk estimasi daya listrik tenaga angin studi kasus kota sabang
topic wind speed, artificial neural network, electrical energy, sabang, wind power
url https://ojs.serambimekkah.ac.id/jse/article/view/6010
work_keys_str_mv AT abdulmalek prediksikecepatananginjangkamenengahdenganartificialneuralnetworkuntukestimasidayalistriktenagaanginstudikasuskotasabang
AT suriadisuriadi prediksikecepatananginjangkamenengahdenganartificialneuralnetworkuntukestimasidayalistriktenagaanginstudikasuskotasabang
AT khairunsaddami prediksikecepatananginjangkamenengahdenganartificialneuralnetworkuntukestimasidayalistriktenagaanginstudikasuskotasabang