Summary: | Traumatic or degenerative rotator cuff (RC) tendon injuries are a leading cause of persistent shoulder pain and reduction of mobility with associated disability and dysfunction, which require each year more than 250,000 surgical repairs in the United States. MicroRNAs (miRNAs) are small noncoding RNAs, that in the posttranscriptional phase lead to the development and function of tissues. The aim of this review was to identify miRNA expression changes in patients with RC pathologies and to determine their relevance as a potential novel diagnostic and potentially therapeutic tool for RC disorders. Various miRNAs seemed to be key regulators in the muscle architecture, determining several modifications in muscle atrophy, skeletal muscle mechanical adaptation, lipid accumulation, and fibrosis in the presence of RC tears. The search was executed using PubMed, Medline, Scopus, and Cochrane Central. We included studies written in English that evaluated the role of miRNA in diagnosis, physiopathology, and potential therapeutic application of RC tendon injuries. We included 11 studies in this review. Many miRNAs emerged as key regulators in the pathogenesis of RC tears, inflammation, and muscle fatty degeneration. In fact, they are involved in the regulation of myogenesis, inflammatory cytokines, metalloproteases expression, muscle adaptation, adipogenesis, fibrogenic factors, and extracellular matrix synthesis. The gene expression may be altered in the pathological processes of tendon lesions. Therefore, the knowledge of all the gene mechanisms underlying RC tendinopathy should be achieved with future diagnostic and clinical studies.
|