MDLab: AI frameworks for carbon capture and battery materials

There is a growing urgency to discover better materials that capture CO2 from air and improve battery performance. An important step is to search large databases of materials properties to find examples that resemble known carbon capture agents or electrolytes and then test them for effectiveness. T...

Full description

Bibliographic Details
Main Authors: Bruce Elmegreen, Hendrik F. Hamann, Benjamin Wunsch, Theodore Van Kessel, Binquan Luan, Tonia Elengikal, Mathias Steiner, Rodrigo Neumann Barros Ferreira, Ricardo Luis Ohta, Felipe Lopes Oliveira, James L. McDonagh, Breanndan O’Conchuir, Stamatia Zavitsanou, Alexander Harrison, Flaviu Cipcigan, Geeth de Mel, Young-Hye La, Vidushi Sharma, Dmitry Yu Zubarev
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-08-01
Series:Frontiers in Environmental Science
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fenvs.2023.1204690/full
_version_ 1797735968369803264
author Bruce Elmegreen
Hendrik F. Hamann
Benjamin Wunsch
Theodore Van Kessel
Binquan Luan
Tonia Elengikal
Mathias Steiner
Rodrigo Neumann Barros Ferreira
Ricardo Luis Ohta
Felipe Lopes Oliveira
James L. McDonagh
Breanndan O’Conchuir
Stamatia Zavitsanou
Alexander Harrison
Flaviu Cipcigan
Geeth de Mel
Young-Hye La
Vidushi Sharma
Dmitry Yu Zubarev
author_facet Bruce Elmegreen
Hendrik F. Hamann
Benjamin Wunsch
Theodore Van Kessel
Binquan Luan
Tonia Elengikal
Mathias Steiner
Rodrigo Neumann Barros Ferreira
Ricardo Luis Ohta
Felipe Lopes Oliveira
James L. McDonagh
Breanndan O’Conchuir
Stamatia Zavitsanou
Alexander Harrison
Flaviu Cipcigan
Geeth de Mel
Young-Hye La
Vidushi Sharma
Dmitry Yu Zubarev
author_sort Bruce Elmegreen
collection DOAJ
description There is a growing urgency to discover better materials that capture CO2 from air and improve battery performance. An important step is to search large databases of materials properties to find examples that resemble known carbon capture agents or electrolytes and then test them for effectiveness. This paper describes novel computational tools for accelerated discovery of solvents, nano-porous materials, and electrolytes. These tools have produced interesting results so far, such as the identification of a relatively isolated location in amine configuration space for the solvents with known carbon capture use, and the demonstration of an end-to-end simulation and process model for carbon capture in MOFs.
first_indexed 2024-03-12T13:06:48Z
format Article
id doaj.art-d549eb903fde4e5e8a3c273393e70b8b
institution Directory Open Access Journal
issn 2296-665X
language English
last_indexed 2024-03-12T13:06:48Z
publishDate 2023-08-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Environmental Science
spelling doaj.art-d549eb903fde4e5e8a3c273393e70b8b2023-08-28T15:04:02ZengFrontiers Media S.A.Frontiers in Environmental Science2296-665X2023-08-011110.3389/fenvs.2023.12046901204690MDLab: AI frameworks for carbon capture and battery materialsBruce Elmegreen0Hendrik F. Hamann1Benjamin Wunsch2Theodore Van Kessel3Binquan Luan4Tonia Elengikal5Mathias Steiner6Rodrigo Neumann Barros Ferreira7Ricardo Luis Ohta8Felipe Lopes Oliveira9James L. McDonagh10Breanndan O’Conchuir11Stamatia Zavitsanou12Alexander Harrison13Flaviu Cipcigan14Geeth de Mel15Young-Hye La16Vidushi Sharma17Dmitry Yu Zubarev18IBM Research, T. J. Watson Research Center, Yorktown Heights, NY, United StatesIBM Research, T. J. Watson Research Center, Yorktown Heights, NY, United StatesIBM Research, T. J. Watson Research Center, Yorktown Heights, NY, United StatesIBM Research, T. J. Watson Research Center, Yorktown Heights, NY, United StatesIBM Research, T. J. Watson Research Center, Yorktown Heights, NY, United StatesIBM Research, T. J. Watson Research Center, Yorktown Heights, NY, United StatesIBM Research, Rio deo Janeiro, BrazilIBM Research, Rio deo Janeiro, BrazilIBM Research, Rio deo Janeiro, BrazilIBM Research, Rio deo Janeiro, BrazilIBM Research Europe, Hartree Centre, Sci-Tech Daresbury, Warrington, United KingdomIBM Research Europe, Hartree Centre, Sci-Tech Daresbury, Warrington, United KingdomIBM Research Europe, Hartree Centre, Sci-Tech Daresbury, Warrington, United KingdomIBM Research Europe, Hartree Centre, Sci-Tech Daresbury, Warrington, United KingdomIBM Research Europe, Hartree Centre, Sci-Tech Daresbury, Warrington, United KingdomIBM Research Europe, Hartree Centre, Sci-Tech Daresbury, Warrington, United KingdomIBM Research Almaden, San Jose, CA, United StatesIBM Research Almaden, San Jose, CA, United StatesIBM Research Almaden, San Jose, CA, United StatesThere is a growing urgency to discover better materials that capture CO2 from air and improve battery performance. An important step is to search large databases of materials properties to find examples that resemble known carbon capture agents or electrolytes and then test them for effectiveness. This paper describes novel computational tools for accelerated discovery of solvents, nano-porous materials, and electrolytes. These tools have produced interesting results so far, such as the identification of a relatively isolated location in amine configuration space for the solvents with known carbon capture use, and the demonstration of an end-to-end simulation and process model for carbon capture in MOFs.https://www.frontiersin.org/articles/10.3389/fenvs.2023.1204690/fullcarbon capturechemical informaticsaminescomputational chemistrynanoporous materialselectrolytes
spellingShingle Bruce Elmegreen
Hendrik F. Hamann
Benjamin Wunsch
Theodore Van Kessel
Binquan Luan
Tonia Elengikal
Mathias Steiner
Rodrigo Neumann Barros Ferreira
Ricardo Luis Ohta
Felipe Lopes Oliveira
James L. McDonagh
Breanndan O’Conchuir
Stamatia Zavitsanou
Alexander Harrison
Flaviu Cipcigan
Geeth de Mel
Young-Hye La
Vidushi Sharma
Dmitry Yu Zubarev
MDLab: AI frameworks for carbon capture and battery materials
Frontiers in Environmental Science
carbon capture
chemical informatics
amines
computational chemistry
nanoporous materials
electrolytes
title MDLab: AI frameworks for carbon capture and battery materials
title_full MDLab: AI frameworks for carbon capture and battery materials
title_fullStr MDLab: AI frameworks for carbon capture and battery materials
title_full_unstemmed MDLab: AI frameworks for carbon capture and battery materials
title_short MDLab: AI frameworks for carbon capture and battery materials
title_sort mdlab ai frameworks for carbon capture and battery materials
topic carbon capture
chemical informatics
amines
computational chemistry
nanoporous materials
electrolytes
url https://www.frontiersin.org/articles/10.3389/fenvs.2023.1204690/full
work_keys_str_mv AT bruceelmegreen mdlabaiframeworksforcarboncaptureandbatterymaterials
AT hendrikfhamann mdlabaiframeworksforcarboncaptureandbatterymaterials
AT benjaminwunsch mdlabaiframeworksforcarboncaptureandbatterymaterials
AT theodorevankessel mdlabaiframeworksforcarboncaptureandbatterymaterials
AT binquanluan mdlabaiframeworksforcarboncaptureandbatterymaterials
AT toniaelengikal mdlabaiframeworksforcarboncaptureandbatterymaterials
AT mathiassteiner mdlabaiframeworksforcarboncaptureandbatterymaterials
AT rodrigoneumannbarrosferreira mdlabaiframeworksforcarboncaptureandbatterymaterials
AT ricardoluisohta mdlabaiframeworksforcarboncaptureandbatterymaterials
AT felipelopesoliveira mdlabaiframeworksforcarboncaptureandbatterymaterials
AT jameslmcdonagh mdlabaiframeworksforcarboncaptureandbatterymaterials
AT breanndanoconchuir mdlabaiframeworksforcarboncaptureandbatterymaterials
AT stamatiazavitsanou mdlabaiframeworksforcarboncaptureandbatterymaterials
AT alexanderharrison mdlabaiframeworksforcarboncaptureandbatterymaterials
AT flaviucipcigan mdlabaiframeworksforcarboncaptureandbatterymaterials
AT geethdemel mdlabaiframeworksforcarboncaptureandbatterymaterials
AT younghyela mdlabaiframeworksforcarboncaptureandbatterymaterials
AT vidushisharma mdlabaiframeworksforcarboncaptureandbatterymaterials
AT dmitryyuzubarev mdlabaiframeworksforcarboncaptureandbatterymaterials