A Prion Protein Fragment Primes Type 1 Astrocytes to Proliferation Signals from Microglia

Gliosis is a hallmark of prion disease. A neurotoxic prion peptide (PrP106-126) induces astrocyte proliferation in the presence of microglia. This peptide also directly enhances microglial proliferation in culture. We have investigated this further to understand the method by which factors released...

Full description

Bibliographic Details
Main Authors: David R. Brown, Bernhard Schmidt, Hans A. Kretzschmar
Format: Article
Language:English
Published: Elsevier 1998-01-01
Series:Neurobiology of Disease
Online Access:http://www.sciencedirect.com/science/article/pii/S0969996198901693
Description
Summary:Gliosis is a hallmark of prion disease. A neurotoxic prion peptide (PrP106-126) induces astrocyte proliferation in the presence of microglia. This peptide also directly enhances microglial proliferation in culture. We have investigated this further to understand the method by which factors released by microglia and PrP106-126 work together to enhance astrocyte proliferation. PrP106-126 in the presence of microglia specifically enhanced type 1 astrocyte proliferation but not Type 2. Astrocytes that do not express the prion protein were more sensitive to oxidative stress and the toxicity of cytosine arabinoside. In the presence of cytosine arabinoside, PrP106-126 was toxic to pure astrocyte cultures. Using conditioned medium from microglia we have shown that PrPc-expressing astrocytes proliferate in response to factors released by microglia stimulated by granulocyte/macrophage colony-stimulating factor. This response is enhanced in the presence of PrP106-126. PrPc-deficient astrocytes do not show this response. These results suggest that astrocytes are primed by PrP106-126 to respond more to factors released by proliferating microglia. Astrocytes may proliferate in this system to escape entering the cell suicide pathway.
ISSN:1095-953X