EXISTENCE AND COMPACTNESS THEORY FOR ALE SCALAR-FLAT KÄHLER SURFACES

Our main result in this article is a compactness result which states that a noncollapsed sequence of asymptotically locally Euclidean (ALE) scalar-flat Kähler metrics on a minimal Kähler surface whose Kähler classes stay in a compact subset of the interior of the Kähler cone must have a convergent s...

Full description

Bibliographic Details
Main Authors: JIYUAN HAN, JEFF A. VIACLOVSKY
Format: Article
Language:English
Published: Cambridge University Press 2020-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509419000422/type/journal_article
_version_ 1811156204932562944
author JIYUAN HAN
JEFF A. VIACLOVSKY
author_facet JIYUAN HAN
JEFF A. VIACLOVSKY
author_sort JIYUAN HAN
collection DOAJ
description Our main result in this article is a compactness result which states that a noncollapsed sequence of asymptotically locally Euclidean (ALE) scalar-flat Kähler metrics on a minimal Kähler surface whose Kähler classes stay in a compact subset of the interior of the Kähler cone must have a convergent subsequence. As an application, we prove the existence of global moduli spaces of scalar-flat Kähler ALE metrics for several infinite families of Kähler ALE spaces.
first_indexed 2024-04-10T04:47:36Z
format Article
id doaj.art-d557783921d8409a8f5850270f95599f
institution Directory Open Access Journal
issn 2050-5094
language English
last_indexed 2024-04-10T04:47:36Z
publishDate 2020-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Sigma
spelling doaj.art-d557783921d8409a8f5850270f95599f2023-03-09T12:34:47ZengCambridge University PressForum of Mathematics, Sigma2050-50942020-01-01810.1017/fms.2019.42EXISTENCE AND COMPACTNESS THEORY FOR ALE SCALAR-FLAT KÄHLER SURFACESJIYUAN HAN0JEFF A. VIACLOVSKY1Department of Mathematics, Purdue University, West Lafayette, IN, 47907, USA;Department of Mathematics, University of California, Irvine, CA, 92697, USA;Our main result in this article is a compactness result which states that a noncollapsed sequence of asymptotically locally Euclidean (ALE) scalar-flat Kähler metrics on a minimal Kähler surface whose Kähler classes stay in a compact subset of the interior of the Kähler cone must have a convergent subsequence. As an application, we prove the existence of global moduli spaces of scalar-flat Kähler ALE metrics for several infinite families of Kähler ALE spaces.https://www.cambridge.org/core/product/identifier/S2050509419000422/type/journal_article53C5553C25
spellingShingle JIYUAN HAN
JEFF A. VIACLOVSKY
EXISTENCE AND COMPACTNESS THEORY FOR ALE SCALAR-FLAT KÄHLER SURFACES
Forum of Mathematics, Sigma
53C55
53C25
title EXISTENCE AND COMPACTNESS THEORY FOR ALE SCALAR-FLAT KÄHLER SURFACES
title_full EXISTENCE AND COMPACTNESS THEORY FOR ALE SCALAR-FLAT KÄHLER SURFACES
title_fullStr EXISTENCE AND COMPACTNESS THEORY FOR ALE SCALAR-FLAT KÄHLER SURFACES
title_full_unstemmed EXISTENCE AND COMPACTNESS THEORY FOR ALE SCALAR-FLAT KÄHLER SURFACES
title_short EXISTENCE AND COMPACTNESS THEORY FOR ALE SCALAR-FLAT KÄHLER SURFACES
title_sort existence and compactness theory for ale scalar flat kahler surfaces
topic 53C55
53C25
url https://www.cambridge.org/core/product/identifier/S2050509419000422/type/journal_article
work_keys_str_mv AT jiyuanhan existenceandcompactnesstheoryforalescalarflatkahlersurfaces
AT jeffaviaclovsky existenceandcompactnesstheoryforalescalarflatkahlersurfaces