Revealing the topological phase diagram of ZrTe5 using the complex strain fields of microbubbles

Abstract Topological materials host robust properties, unaffected by microscopic perturbations, owing to the global topological properties of the bulk electron system. Materials in which the topological invariant can be changed by easily tuning external parameters are especially sought after. Zircon...

Full description

Bibliographic Details
Main Authors: Zoltán Tajkov, Dániel Nagy, Konrád Kandrai, János Koltai, László Oroszlány, Péter Süle, Zsolt E. Horváth, Péter Vancsó, Levente Tapasztó, Péter Nemes-Incze
Format: Article
Language:English
Published: Nature Portfolio 2022-08-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-022-00854-z
_version_ 1811340322439954432
author Zoltán Tajkov
Dániel Nagy
Konrád Kandrai
János Koltai
László Oroszlány
Péter Süle
Zsolt E. Horváth
Péter Vancsó
Levente Tapasztó
Péter Nemes-Incze
author_facet Zoltán Tajkov
Dániel Nagy
Konrád Kandrai
János Koltai
László Oroszlány
Péter Süle
Zsolt E. Horváth
Péter Vancsó
Levente Tapasztó
Péter Nemes-Incze
author_sort Zoltán Tajkov
collection DOAJ
description Abstract Topological materials host robust properties, unaffected by microscopic perturbations, owing to the global topological properties of the bulk electron system. Materials in which the topological invariant can be changed by easily tuning external parameters are especially sought after. Zirconium pentatelluride (ZrTe5) is one of a few experimentally available materials that reside close to the boundary of a topological phase transition, allowing the switching of its invariant by mechanical strain. Here, we unambiguously identify a topological insulator–metal transition as a function of strain, by a combination of ab initio calculations and direct measurements of the local charge density. Our model quantitatively describes the response to complex strain patterns found in bubbles of few layer ZrTe5 without fitting parameters, reproducing the mechanical deformation-dependent closing of the band gap observed using scanning tunneling microscopy. We calculate the topological phase diagram of ZrTe5 and identify the phase at equilibrium, enabling the design of device architectures, which exploit the topological switching characteristics of the system.
first_indexed 2024-04-13T18:39:17Z
format Article
id doaj.art-d5672509c90d46ffa8af3f88af708538
institution Directory Open Access Journal
issn 2057-3960
language English
last_indexed 2024-04-13T18:39:17Z
publishDate 2022-08-01
publisher Nature Portfolio
record_format Article
series npj Computational Materials
spelling doaj.art-d5672509c90d46ffa8af3f88af7085382022-12-22T02:34:46ZengNature Portfolionpj Computational Materials2057-39602022-08-01811710.1038/s41524-022-00854-zRevealing the topological phase diagram of ZrTe5 using the complex strain fields of microbubblesZoltán Tajkov0Dániel Nagy1Konrád Kandrai2János Koltai3László Oroszlány4Péter Süle5Zsolt E. Horváth6Péter Vancsó7Levente Tapasztó8Péter Nemes-Incze9Centre for Energy Research, Institute of Technical Physics and Materials ScienceDepartment of Physics of Complex Systems, ELTE Eötvös Loránd UniversityCentre for Energy Research, Institute of Technical Physics and Materials ScienceELTE Eötvös Loránd University, Department of Biological PhysicsDepartment of Physics of Complex Systems, ELTE Eötvös Loránd UniversityCentre for Energy Research, Institute of Technical Physics and Materials ScienceCentre for Energy Research, Institute of Technical Physics and Materials ScienceCentre for Energy Research, Institute of Technical Physics and Materials ScienceCentre for Energy Research, Institute of Technical Physics and Materials ScienceCentre for Energy Research, Institute of Technical Physics and Materials ScienceAbstract Topological materials host robust properties, unaffected by microscopic perturbations, owing to the global topological properties of the bulk electron system. Materials in which the topological invariant can be changed by easily tuning external parameters are especially sought after. Zirconium pentatelluride (ZrTe5) is one of a few experimentally available materials that reside close to the boundary of a topological phase transition, allowing the switching of its invariant by mechanical strain. Here, we unambiguously identify a topological insulator–metal transition as a function of strain, by a combination of ab initio calculations and direct measurements of the local charge density. Our model quantitatively describes the response to complex strain patterns found in bubbles of few layer ZrTe5 without fitting parameters, reproducing the mechanical deformation-dependent closing of the band gap observed using scanning tunneling microscopy. We calculate the topological phase diagram of ZrTe5 and identify the phase at equilibrium, enabling the design of device architectures, which exploit the topological switching characteristics of the system.https://doi.org/10.1038/s41524-022-00854-z
spellingShingle Zoltán Tajkov
Dániel Nagy
Konrád Kandrai
János Koltai
László Oroszlány
Péter Süle
Zsolt E. Horváth
Péter Vancsó
Levente Tapasztó
Péter Nemes-Incze
Revealing the topological phase diagram of ZrTe5 using the complex strain fields of microbubbles
npj Computational Materials
title Revealing the topological phase diagram of ZrTe5 using the complex strain fields of microbubbles
title_full Revealing the topological phase diagram of ZrTe5 using the complex strain fields of microbubbles
title_fullStr Revealing the topological phase diagram of ZrTe5 using the complex strain fields of microbubbles
title_full_unstemmed Revealing the topological phase diagram of ZrTe5 using the complex strain fields of microbubbles
title_short Revealing the topological phase diagram of ZrTe5 using the complex strain fields of microbubbles
title_sort revealing the topological phase diagram of zrte5 using the complex strain fields of microbubbles
url https://doi.org/10.1038/s41524-022-00854-z
work_keys_str_mv AT zoltantajkov revealingthetopologicalphasediagramofzrte5usingthecomplexstrainfieldsofmicrobubbles
AT danielnagy revealingthetopologicalphasediagramofzrte5usingthecomplexstrainfieldsofmicrobubbles
AT konradkandrai revealingthetopologicalphasediagramofzrte5usingthecomplexstrainfieldsofmicrobubbles
AT janoskoltai revealingthetopologicalphasediagramofzrte5usingthecomplexstrainfieldsofmicrobubbles
AT laszlooroszlany revealingthetopologicalphasediagramofzrte5usingthecomplexstrainfieldsofmicrobubbles
AT petersule revealingthetopologicalphasediagramofzrte5usingthecomplexstrainfieldsofmicrobubbles
AT zsoltehorvath revealingthetopologicalphasediagramofzrte5usingthecomplexstrainfieldsofmicrobubbles
AT petervancso revealingthetopologicalphasediagramofzrte5usingthecomplexstrainfieldsofmicrobubbles
AT leventetapaszto revealingthetopologicalphasediagramofzrte5usingthecomplexstrainfieldsofmicrobubbles
AT peternemesincze revealingthetopologicalphasediagramofzrte5usingthecomplexstrainfieldsofmicrobubbles