Towards a Secure Signature Scheme Based on Multimodal Biometric Technology: Application for IOT Blockchain Network

Blockchain technology has been commonly used in the last years in numerous fields, such as transactions documenting and monitoring real assets (house, cash) or intangible assets (copyright, intellectual property). The internet of things (IoT) technology, on the other hand, has become the main driver...

Full description

Bibliographic Details
Main Authors: Oday A. Hassen, Ansam A. Abdulhussein, Saad M. Darwish, Zulaiha Ali Othman, Sabrina Tiun, Yasmin A. Lotfy
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/10/1699
Description
Summary:Blockchain technology has been commonly used in the last years in numerous fields, such as transactions documenting and monitoring real assets (house, cash) or intangible assets (copyright, intellectual property). The internet of things (IoT) technology, on the other hand, has become the main driver of the fourth industrial revolution, and is currently utilized in diverse fields of industry. New approaches have been established through improving the authentication methods in the blockchain to address the constraints of scalability and protection in IoT operating environments of distributed blockchain technology by control of a private key. However, these authentication mechanisms do not consider security when applying IoT to the network, as the nature of IoT communication with numerous entities all the time in various locations increases security risks resulting in extreme asset damage. This posed many difficulties in finding harmony between security and scalability. To address this gap, the work suggested in this paper adapts multimodal biometrics to strengthen network security by extracting a private key with high entropy. Additionally, via a whitelist, the suggested scheme evaluates the security score for the IoT system with a blockchain smart contract to guarantee that highly secured applications authenticate easily and restrict compromised devices. Experimental results indicate that our system is existentially unforgeable to an efficient message attack, and therefore, decreases the expansion of infected devices to the network by up to 49 percent relative to traditional schemes.
ISSN:2073-8994