Existence and decay of solutions to a viscoelastic plate equation
In this article we study the fourth-order viscoelastic plate equation $$ u_{tt} + \Delta^2 u -\int_0^t g(t-\tau)\Delta^2u(\tau)d\tau = 0 $$ in the bounded domain $\Omega=(0,\pi)\times(-\ell,\ell)\subset\mathbb{R}^2$ with non traditional boundary conditions. We establish the well-posedness and...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2016-01-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2016/22/abstr.html |
_version_ | 1817995718630047744 |
---|---|
author | Salim A. Messaoudi Soh Edwin Mukiawa |
author_facet | Salim A. Messaoudi Soh Edwin Mukiawa |
author_sort | Salim A. Messaoudi |
collection | DOAJ |
description | In this article we study the fourth-order viscoelastic plate equation
$$
u_{tt} + \Delta^2 u -\int_0^t g(t-\tau)\Delta^2u(\tau)d\tau = 0
$$
in the bounded domain $\Omega=(0,\pi)\times(-\ell,\ell)\subset\mathbb{R}^2$
with non traditional boundary conditions. We establish the well-posedness
and a decay result. |
first_indexed | 2024-04-14T02:10:48Z |
format | Article |
id | doaj.art-d58dd3e238f4492b91a7b21e303989e0 |
institution | Directory Open Access Journal |
issn | 1072-6691 |
language | English |
last_indexed | 2024-04-14T02:10:48Z |
publishDate | 2016-01-01 |
publisher | Texas State University |
record_format | Article |
series | Electronic Journal of Differential Equations |
spelling | doaj.art-d58dd3e238f4492b91a7b21e303989e02022-12-22T02:18:26ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912016-01-01201622,114Existence and decay of solutions to a viscoelastic plate equationSalim A. Messaoudi0Soh Edwin Mukiawa1 King Fahd Univ., Dhahran, Saudi Arabia King Fahd Univ., Dhahran, Saudi Arabia In this article we study the fourth-order viscoelastic plate equation $$ u_{tt} + \Delta^2 u -\int_0^t g(t-\tau)\Delta^2u(\tau)d\tau = 0 $$ in the bounded domain $\Omega=(0,\pi)\times(-\ell,\ell)\subset\mathbb{R}^2$ with non traditional boundary conditions. We establish the well-posedness and a decay result.http://ejde.math.txstate.edu/Volumes/2016/22/abstr.htmlExistencedecayplate viscoelasticfourth order |
spellingShingle | Salim A. Messaoudi Soh Edwin Mukiawa Existence and decay of solutions to a viscoelastic plate equation Electronic Journal of Differential Equations Existence decay plate viscoelastic fourth order |
title | Existence and decay of solutions to a viscoelastic plate equation |
title_full | Existence and decay of solutions to a viscoelastic plate equation |
title_fullStr | Existence and decay of solutions to a viscoelastic plate equation |
title_full_unstemmed | Existence and decay of solutions to a viscoelastic plate equation |
title_short | Existence and decay of solutions to a viscoelastic plate equation |
title_sort | existence and decay of solutions to a viscoelastic plate equation |
topic | Existence decay plate viscoelastic fourth order |
url | http://ejde.math.txstate.edu/Volumes/2016/22/abstr.html |
work_keys_str_mv | AT salimamessaoudi existenceanddecayofsolutionstoaviscoelasticplateequation AT sohedwinmukiawa existenceanddecayofsolutionstoaviscoelasticplateequation |