Multi-Attention Multi-Image Super-Resolution Transformer (MAST) for Remote Sensing
Deep-learning-driven multi-image super-resolution (MISR) reconstruction techniques have significant application value in the field of aerospace remote sensing. In particular, Transformer-based models have shown outstanding performance in super-resolution tasks. However, current MISR models have some...
Hlavní autoři: | Jiaao Li, Qunbo Lv, Wenjian Zhang, Baoyu Zhu, Guiyu Zhang, Zheng Tan |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
MDPI AG
2023-08-01
|
Edice: | Remote Sensing |
Témata: | |
On-line přístup: | https://www.mdpi.com/2072-4292/15/17/4183 |
Podobné jednotky
-
Burst-Enhanced Super-Resolution Network (BESR)
Autor: Jiaao Li, a další
Vydáno: (2024-03-01) -
Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
Autor: Min Zhang, a další
Vydáno: (2021-12-01) -
Multi-Window Fusion Spatial-Frequency Joint Self-Attention for Remote-Sensing Image Super-Resolution
Autor: Ziang Li, a další
Vydáno: (2024-10-01) -
Super-Resolution Reconstruction for Multi-Angle Remote Sensing Images Considering Resolution Differences
Autor: Hongyan Zhang, a další
Vydáno: (2014-01-01) -
Multi-attention fusion transformer for single-image super-resolution
Autor: Guanxing Li, a další
Vydáno: (2024-05-01)