Multi-Attention Multi-Image Super-Resolution Transformer (MAST) for Remote Sensing
Deep-learning-driven multi-image super-resolution (MISR) reconstruction techniques have significant application value in the field of aerospace remote sensing. In particular, Transformer-based models have shown outstanding performance in super-resolution tasks. However, current MISR models have some...
主要な著者: | Jiaao Li, Qunbo Lv, Wenjian Zhang, Baoyu Zhu, Guiyu Zhang, Zheng Tan |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
MDPI AG
2023-08-01
|
シリーズ: | Remote Sensing |
主題: | |
オンライン・アクセス: | https://www.mdpi.com/2072-4292/15/17/4183 |
類似資料
-
Burst-Enhanced Super-Resolution Network (BESR)
著者:: Jiaao Li, 等
出版事項: (2024-03-01) -
Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
著者:: Min Zhang, 等
出版事項: (2021-12-01) -
Multi-Window Fusion Spatial-Frequency Joint Self-Attention for Remote-Sensing Image Super-Resolution
著者:: Ziang Li, 等
出版事項: (2024-10-01) -
Super-Resolution Reconstruction for Multi-Angle Remote Sensing Images Considering Resolution Differences
著者:: Hongyan Zhang, 等
出版事項: (2014-01-01) -
Multi-attention fusion transformer for single-image super-resolution
著者:: Guanxing Li, 等
出版事項: (2024-05-01)