Multi-Attention Multi-Image Super-Resolution Transformer (MAST) for Remote Sensing
Deep-learning-driven multi-image super-resolution (MISR) reconstruction techniques have significant application value in the field of aerospace remote sensing. In particular, Transformer-based models have shown outstanding performance in super-resolution tasks. However, current MISR models have some...
Главные авторы: | Jiaao Li, Qunbo Lv, Wenjian Zhang, Baoyu Zhu, Guiyu Zhang, Zheng Tan |
---|---|
Формат: | Статья |
Язык: | English |
Опубликовано: |
MDPI AG
2023-08-01
|
Серии: | Remote Sensing |
Предметы: | |
Online-ссылка: | https://www.mdpi.com/2072-4292/15/17/4183 |
Схожие документы
-
Burst-Enhanced Super-Resolution Network (BESR)
по: Jiaao Li, и др.
Опубликовано: (2024-03-01) -
Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
по: Min Zhang, и др.
Опубликовано: (2021-12-01) -
Multi-Window Fusion Spatial-Frequency Joint Self-Attention for Remote-Sensing Image Super-Resolution
по: Ziang Li, и др.
Опубликовано: (2024-10-01) -
Super-Resolution Reconstruction for Multi-Angle Remote Sensing Images Considering Resolution Differences
по: Hongyan Zhang, и др.
Опубликовано: (2014-01-01) -
Multi-attention fusion transformer for single-image super-resolution
по: Guanxing Li, и др.
Опубликовано: (2024-05-01)