mRNA-miRNA-lncRNA Regulatory Network in Nonalcoholic Fatty Liver Disease
Aim: we aimed to construct a bioinformatics-based co-regulatory network of mRNAs and non coding RNAs (ncRNAs), which is implicated in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), followed by its validation in a NAFLD animal model. Materials and Methods: The mRNAs–miRNAs–lncRNAs reg...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-06-01
|
Series: | International Journal of Molecular Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/1422-0067/22/13/6770 |
Summary: | Aim: we aimed to construct a bioinformatics-based co-regulatory network of mRNAs and non coding RNAs (ncRNAs), which is implicated in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), followed by its validation in a NAFLD animal model. Materials and Methods: The mRNAs–miRNAs–lncRNAs regulatory network involved in NAFLD was retrieved and constructed utilizing bioinformatics tools. Then, we validated this network using an NAFLD animal model, high sucrose and high fat diet (HSHF)-fed rats. Finally, the expression level of the network players was assessed in the liver tissues using reverse transcriptase real-time polymerase chain reaction. Results: in-silico constructed network revealed six mRNAs (<i>YAP1, FOXA2, AMOTL2, TEAD2, SMAD4</i> and <i>NF2</i>), two miRNAs (<i>miR-650</i> and <i>miR-1205</i>), and two lncRNAs (RPARP-AS1 and <i>SRD5A3-AS1</i>) that play important roles as a co-regulatory network in NAFLD pathogenesis. Moreover, the expression level of these constructed network–players was significantly different between NAFLD and normal control. Conclusion and future perspectives: this study provides new insight into the molecular mechanism of NAFLD pathogenesis and valuable clues for the potential use of the constructed RNA network in effective diagnostic or management strategies of NAFLD. |
---|---|
ISSN: | 1661-6596 1422-0067 |