Cosmogenic <sup>10</sup>Be in pyroxene: laboratory progress, production rate systematics, and application of the <sup>10</sup>Be–<sup>3</sup>He nuclide pair in the Antarctic Dry Valleys

<p>Here, we present cosmogenic-<span class="inline-formula"><sup>10</sup></span>Be and cosmogenic-<span class="inline-formula"><sup>3</sup></span>He data from Ferrar dolerite pyroxenes in surficial rock samples and a bedrock c...

Full description

Bibliographic Details
Main Authors: A. Balter-Kennedy, J. M. Schaefer, R. Schwartz, J. L. Lamp, L. Penrose, J. Middleton, J. Hanley, B. Tibari, P.-H. Blard, G. Winckler, A. J. Hidy, G. Balco
Format: Article
Language:English
Published: Copernicus Publications 2023-07-01
Series:Geochronology
Online Access:https://gchron.copernicus.org/articles/5/301/2023/gchron-5-301-2023.pdf
_version_ 1797256806359105536
author A. Balter-Kennedy
A. Balter-Kennedy
J. M. Schaefer
J. M. Schaefer
R. Schwartz
J. L. Lamp
L. Penrose
J. Middleton
J. Hanley
B. Tibari
P.-H. Blard
G. Winckler
G. Winckler
A. J. Hidy
G. Balco
author_facet A. Balter-Kennedy
A. Balter-Kennedy
J. M. Schaefer
J. M. Schaefer
R. Schwartz
J. L. Lamp
L. Penrose
J. Middleton
J. Hanley
B. Tibari
P.-H. Blard
G. Winckler
G. Winckler
A. J. Hidy
G. Balco
author_sort A. Balter-Kennedy
collection DOAJ
description <p>Here, we present cosmogenic-<span class="inline-formula"><sup>10</sup></span>Be and cosmogenic-<span class="inline-formula"><sup>3</sup></span>He data from Ferrar dolerite pyroxenes in surficial rock samples and a bedrock core from the McMurdo Dry Valleys, Antarctica, with the goal of refining the laboratory methods for extracting beryllium from pyroxene, further estimating the <span class="inline-formula"><sup>10</sup></span>Be production rate in pyroxene and demonstrating the applicability of <span class="inline-formula"><sup>10</sup></span>Be–<span class="inline-formula"><sup>3</sup></span>He in mafic rock. The ability to routinely measure cosmogenic <span class="inline-formula"><sup>10</sup></span>Be in pyroxene will open new opportunities for quantifying exposure durations and Earth surface processes in mafic rocks. We describe scalable laboratory methods for isolating beryllium from pyroxene, which include a simple hydrofluoric acid leaching procedure for removing meteoric <span class="inline-formula"><sup>10</sup></span>Be and the addition of a pH 8 precipitation step to reduce the cation load prior to ion exchange chromatography. <span class="inline-formula"><sup>10</sup></span>Be measurements in pyroxene from the surface samples have apparent <span class="inline-formula"><sup>3</sup></span>He exposure ages of 1–6 Myr. We estimate a spallation production rate for <span class="inline-formula"><sup>10</sup></span>Be in pyroxene, referenced to <span class="inline-formula"><sup>3</sup></span>He, of 3.6 <span class="inline-formula">±</span> 0.2 atoms g<span class="inline-formula"><sup>−1</sup></span> yr<span class="inline-formula"><sup>−1</sup></span>. <span class="inline-formula"><sup>10</sup></span>Be and <span class="inline-formula"><sup>3</sup></span>He measurements in the bedrock core yield initial estimates for parameters associated with <span class="inline-formula"><sup>10</sup></span>Be and <span class="inline-formula"><sup>3</sup></span>He production by negative-muon capture (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M23" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>f</mi><mn mathvariant="normal">10</mn><mo>∗</mo></msubsup><mo>=</mo><mn mathvariant="normal">0.00183</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="67pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="b8d80758c5229555d2f87ecc0009ae48"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gchron-5-301-2023-ie00001.svg" width="67pt" height="14pt" src="gchron-5-301-2023-ie00001.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M24" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>f</mi><mn mathvariant="normal">3</mn><mo>∗</mo></msubsup><msub><mi>f</mi><mtext>C</mtext></msub><msub><mi>f</mi><mtext>D</mtext></msub><mo>=</mo><mn mathvariant="normal">0.00337</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="83pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="9948fc960df7c711666d09b5b9e12773"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gchron-5-301-2023-ie00002.svg" width="83pt" height="14pt" src="gchron-5-301-2023-ie00002.png"/></svg:svg></span></span>).</p> <p>Next, we demonstrate that the <span class="inline-formula"><sup>10</sup></span>Be–<span class="inline-formula"><sup>3</sup></span>He pair in pyroxene can be used to simultaneously resolve erosion rates and exposure ages, finding that the measured cosmogenic-nuclide concentrations in our surface samples are best explained by 2–8 Myr of exposure at erosion rates of 0–35 cm Myr<span class="inline-formula"><sup>−1</sup></span>. Finally, given the low <span class="inline-formula"><sup>10</sup></span>Be in our laboratory blanks (average of 5.7 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>3</sup></span> atoms), the reported measurement precision, and our estimated production rate, it should be possible to measure 2 g samples with <span class="inline-formula"><sup>10</sup></span>Be concentrations of 6 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>4</sup></span> and 1.5 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>4</sup></span> atoms g<span class="inline-formula"><sup>−1</sup></span> with 5 % and 15 % uncertainty, respectively. With this level of precision, Last Glacial Maximum to Late Holocene surfaces can now be dated with <span class="inline-formula"><sup>10</sup></span>Be in pyroxene. Application of <span class="inline-formula"><sup>10</sup></span>Be in pyroxene, alone or in combination with <span class="inline-formula"><sup>3</sup></span>He, will expand possibilities for investigating glacial histories and landscape change in mafic rock.</p>
first_indexed 2024-04-24T22:27:36Z
format Article
id doaj.art-d5a14dc692d848da803f3acd24109377
institution Directory Open Access Journal
issn 2628-3697
2628-3719
language English
last_indexed 2024-04-24T22:27:36Z
publishDate 2023-07-01
publisher Copernicus Publications
record_format Article
series Geochronology
spelling doaj.art-d5a14dc692d848da803f3acd241093772024-03-19T22:37:25ZengCopernicus PublicationsGeochronology2628-36972628-37192023-07-01530132110.5194/gchron-5-301-2023Cosmogenic <sup>10</sup>Be in pyroxene: laboratory progress, production rate systematics, and application of the <sup>10</sup>Be–<sup>3</sup>He nuclide pair in the Antarctic Dry ValleysA. Balter-Kennedy0A. Balter-Kennedy1J. M. Schaefer2J. M. Schaefer3R. Schwartz4J. L. Lamp5L. Penrose6J. Middleton7J. Hanley8B. Tibari9P.-H. Blard10G. Winckler11G. Winckler12A. J. Hidy13G. Balco14Lamont–Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USADepartment of Earth and Environmental Sciences, Columbia University, New York, NY 10027, USALamont–Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USADepartment of Earth and Environmental Sciences, Columbia University, New York, NY 10027, USALamont–Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USALamont–Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USALamont–Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USALamont–Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USALamont–Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USACRPG, CNRS, Université de Lorraine, 54 000 Nancy, FranceCRPG, CNRS, Université de Lorraine, 54 000 Nancy, FranceLamont–Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USADepartment of Earth and Environmental Sciences, Columbia University, New York, NY 10027, USADepartment is Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USABerkeley Geochronology Center, Berkeley, CA 94709, USA<p>Here, we present cosmogenic-<span class="inline-formula"><sup>10</sup></span>Be and cosmogenic-<span class="inline-formula"><sup>3</sup></span>He data from Ferrar dolerite pyroxenes in surficial rock samples and a bedrock core from the McMurdo Dry Valleys, Antarctica, with the goal of refining the laboratory methods for extracting beryllium from pyroxene, further estimating the <span class="inline-formula"><sup>10</sup></span>Be production rate in pyroxene and demonstrating the applicability of <span class="inline-formula"><sup>10</sup></span>Be–<span class="inline-formula"><sup>3</sup></span>He in mafic rock. The ability to routinely measure cosmogenic <span class="inline-formula"><sup>10</sup></span>Be in pyroxene will open new opportunities for quantifying exposure durations and Earth surface processes in mafic rocks. We describe scalable laboratory methods for isolating beryllium from pyroxene, which include a simple hydrofluoric acid leaching procedure for removing meteoric <span class="inline-formula"><sup>10</sup></span>Be and the addition of a pH 8 precipitation step to reduce the cation load prior to ion exchange chromatography. <span class="inline-formula"><sup>10</sup></span>Be measurements in pyroxene from the surface samples have apparent <span class="inline-formula"><sup>3</sup></span>He exposure ages of 1–6 Myr. We estimate a spallation production rate for <span class="inline-formula"><sup>10</sup></span>Be in pyroxene, referenced to <span class="inline-formula"><sup>3</sup></span>He, of 3.6 <span class="inline-formula">±</span> 0.2 atoms g<span class="inline-formula"><sup>−1</sup></span> yr<span class="inline-formula"><sup>−1</sup></span>. <span class="inline-formula"><sup>10</sup></span>Be and <span class="inline-formula"><sup>3</sup></span>He measurements in the bedrock core yield initial estimates for parameters associated with <span class="inline-formula"><sup>10</sup></span>Be and <span class="inline-formula"><sup>3</sup></span>He production by negative-muon capture (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M23" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>f</mi><mn mathvariant="normal">10</mn><mo>∗</mo></msubsup><mo>=</mo><mn mathvariant="normal">0.00183</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="67pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="b8d80758c5229555d2f87ecc0009ae48"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gchron-5-301-2023-ie00001.svg" width="67pt" height="14pt" src="gchron-5-301-2023-ie00001.png"/></svg:svg></span></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M24" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi>f</mi><mn mathvariant="normal">3</mn><mo>∗</mo></msubsup><msub><mi>f</mi><mtext>C</mtext></msub><msub><mi>f</mi><mtext>D</mtext></msub><mo>=</mo><mn mathvariant="normal">0.00337</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="83pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="9948fc960df7c711666d09b5b9e12773"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="gchron-5-301-2023-ie00002.svg" width="83pt" height="14pt" src="gchron-5-301-2023-ie00002.png"/></svg:svg></span></span>).</p> <p>Next, we demonstrate that the <span class="inline-formula"><sup>10</sup></span>Be–<span class="inline-formula"><sup>3</sup></span>He pair in pyroxene can be used to simultaneously resolve erosion rates and exposure ages, finding that the measured cosmogenic-nuclide concentrations in our surface samples are best explained by 2–8 Myr of exposure at erosion rates of 0–35 cm Myr<span class="inline-formula"><sup>−1</sup></span>. Finally, given the low <span class="inline-formula"><sup>10</sup></span>Be in our laboratory blanks (average of 5.7 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>3</sup></span> atoms), the reported measurement precision, and our estimated production rate, it should be possible to measure 2 g samples with <span class="inline-formula"><sup>10</sup></span>Be concentrations of 6 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>4</sup></span> and 1.5 <span class="inline-formula">×</span> 10<span class="inline-formula"><sup>4</sup></span> atoms g<span class="inline-formula"><sup>−1</sup></span> with 5 % and 15 % uncertainty, respectively. With this level of precision, Last Glacial Maximum to Late Holocene surfaces can now be dated with <span class="inline-formula"><sup>10</sup></span>Be in pyroxene. Application of <span class="inline-formula"><sup>10</sup></span>Be in pyroxene, alone or in combination with <span class="inline-formula"><sup>3</sup></span>He, will expand possibilities for investigating glacial histories and landscape change in mafic rock.</p>https://gchron.copernicus.org/articles/5/301/2023/gchron-5-301-2023.pdf
spellingShingle A. Balter-Kennedy
A. Balter-Kennedy
J. M. Schaefer
J. M. Schaefer
R. Schwartz
J. L. Lamp
L. Penrose
J. Middleton
J. Hanley
B. Tibari
P.-H. Blard
G. Winckler
G. Winckler
A. J. Hidy
G. Balco
Cosmogenic <sup>10</sup>Be in pyroxene: laboratory progress, production rate systematics, and application of the <sup>10</sup>Be–<sup>3</sup>He nuclide pair in the Antarctic Dry Valleys
Geochronology
title Cosmogenic <sup>10</sup>Be in pyroxene: laboratory progress, production rate systematics, and application of the <sup>10</sup>Be–<sup>3</sup>He nuclide pair in the Antarctic Dry Valleys
title_full Cosmogenic <sup>10</sup>Be in pyroxene: laboratory progress, production rate systematics, and application of the <sup>10</sup>Be–<sup>3</sup>He nuclide pair in the Antarctic Dry Valleys
title_fullStr Cosmogenic <sup>10</sup>Be in pyroxene: laboratory progress, production rate systematics, and application of the <sup>10</sup>Be–<sup>3</sup>He nuclide pair in the Antarctic Dry Valleys
title_full_unstemmed Cosmogenic <sup>10</sup>Be in pyroxene: laboratory progress, production rate systematics, and application of the <sup>10</sup>Be–<sup>3</sup>He nuclide pair in the Antarctic Dry Valleys
title_short Cosmogenic <sup>10</sup>Be in pyroxene: laboratory progress, production rate systematics, and application of the <sup>10</sup>Be–<sup>3</sup>He nuclide pair in the Antarctic Dry Valleys
title_sort cosmogenic sup 10 sup be in pyroxene laboratory progress production rate systematics and application of the sup 10 sup be sup 3 sup he nuclide pair in the antarctic dry valleys
url https://gchron.copernicus.org/articles/5/301/2023/gchron-5-301-2023.pdf
work_keys_str_mv AT abalterkennedy cosmogenicsup10supbeinpyroxenelaboratoryprogressproductionratesystematicsandapplicationofthesup10supbesup3suphenuclidepairintheantarcticdryvalleys
AT abalterkennedy cosmogenicsup10supbeinpyroxenelaboratoryprogressproductionratesystematicsandapplicationofthesup10supbesup3suphenuclidepairintheantarcticdryvalleys
AT jmschaefer cosmogenicsup10supbeinpyroxenelaboratoryprogressproductionratesystematicsandapplicationofthesup10supbesup3suphenuclidepairintheantarcticdryvalleys
AT jmschaefer cosmogenicsup10supbeinpyroxenelaboratoryprogressproductionratesystematicsandapplicationofthesup10supbesup3suphenuclidepairintheantarcticdryvalleys
AT rschwartz cosmogenicsup10supbeinpyroxenelaboratoryprogressproductionratesystematicsandapplicationofthesup10supbesup3suphenuclidepairintheantarcticdryvalleys
AT jllamp cosmogenicsup10supbeinpyroxenelaboratoryprogressproductionratesystematicsandapplicationofthesup10supbesup3suphenuclidepairintheantarcticdryvalleys
AT lpenrose cosmogenicsup10supbeinpyroxenelaboratoryprogressproductionratesystematicsandapplicationofthesup10supbesup3suphenuclidepairintheantarcticdryvalleys
AT jmiddleton cosmogenicsup10supbeinpyroxenelaboratoryprogressproductionratesystematicsandapplicationofthesup10supbesup3suphenuclidepairintheantarcticdryvalleys
AT jhanley cosmogenicsup10supbeinpyroxenelaboratoryprogressproductionratesystematicsandapplicationofthesup10supbesup3suphenuclidepairintheantarcticdryvalleys
AT btibari cosmogenicsup10supbeinpyroxenelaboratoryprogressproductionratesystematicsandapplicationofthesup10supbesup3suphenuclidepairintheantarcticdryvalleys
AT phblard cosmogenicsup10supbeinpyroxenelaboratoryprogressproductionratesystematicsandapplicationofthesup10supbesup3suphenuclidepairintheantarcticdryvalleys
AT gwinckler cosmogenicsup10supbeinpyroxenelaboratoryprogressproductionratesystematicsandapplicationofthesup10supbesup3suphenuclidepairintheantarcticdryvalleys
AT gwinckler cosmogenicsup10supbeinpyroxenelaboratoryprogressproductionratesystematicsandapplicationofthesup10supbesup3suphenuclidepairintheantarcticdryvalleys
AT ajhidy cosmogenicsup10supbeinpyroxenelaboratoryprogressproductionratesystematicsandapplicationofthesup10supbesup3suphenuclidepairintheantarcticdryvalleys
AT gbalco cosmogenicsup10supbeinpyroxenelaboratoryprogressproductionratesystematicsandapplicationofthesup10supbesup3suphenuclidepairintheantarcticdryvalleys